
Coin LP
A tutorial

John Forrest
July 17 2006

 Background
 Some concepts
 Example C+ + code
 Stand- alone solver
 Less structured part :

• Q & A
• More examples
• Future -

• What can I do for you?
• What can you do for Clp

Outline of Clp tutorial

Background

 Coin launched at ISMP 2000
 Coin nat ive Mps reader
 Coin nat ive factorizat ion for Gomory cuts
 Need for nat ive code – f irst release of Clp 2002

• OSL on way out
• Clp - “reference code”? From OSL
• OSL influence but new mistakes

 Slow improvements to code mainly for reliability
 Use in Branch and Cut (see tomorrow's tutorial)

Some concepts

 Target use is “meta” algorithms i.e. Repeated use of
simplex.
 Simplex oriented; weak in other areas - Q&A?
 Virtual pivot choice - relat ively easy for user to create own.

• Nice idea but steepest edge normally best
• Ideas to let user write simplex code – needs thought

 Virtual matrix storage - easy for user to create own
• Can even do column generat ion or dynamic matrices
• Network matrix storage and factorizat ion.
• Good example is Generalized Upper Bound coding

 Many unfinished areas - “when I get t ime”

Classes

 ClpModel - realizat ion of OsiSolverInterface
• + names
• + virtual ClpMatrixBase
• Sub model constructor
• Const and non const array pointers

 ClpSimplex – adds status arrays, factorizat ion (could be
virtual) and virtual pivot choice.

• ClpSimplexDual, ..Primal – no extra data, user does not
need to know
• ClpSimplexNonlinear has SLP method and act ive set
method

 ClpInterior - ClpPredictorCorrector

More classes

 ClpDualRowPivot – abstract class for choosing pivot row in
dual

• ClpDualRowDantzig
• ClpDualRowSteepest – preferred

 ClpPrimalColumnPivot – abstract class for in column in
primal

• ClpPrimalColumnDantzig
• ClpPrimalColumnSteepest – preferred (and can be
tuned)

 ClpFactorizat ion – uses CoinFactorizat ion at present or
 ClpNetworkBasis if network
 ClpNonLinearCost – piecewise linear object ive – no phase
1/ 2

Matrix classes

 ClpMatrixBase abstract class for storing matrix
• ClpPackedMatrix – pointer to CoinPackedMatrix plus
bits
• ClpPlusMinusOneMatrix
• ClpNetworkMatrix – not integrated so slower than
network code
• ClpGubMatrix etc – can be very fast but st ill not
f inished Q&A
• ClpSmallMatrix – will show to show amount of effort

• Could be extended to be useful

Miscellaneous classes

 Sophist icated users can derive from below for more
control

• ClpEventHandler – iterat ion, factorizat ion etc
• ClpMessageHandler – messages – also control print ing

 ClpObject ive – abstract class for object ive
• ClpLinearObject ive – linear
• ClpQuadrat icObject ive – quadrat ic
• ClpUserCouldCreate – use with SLP or with more work
with act ive set method

 ClpSolve – to try and collect solut ion strategy in one place
 Idiot – what can I say?
 ClpPresolve – just an interface to CoinPresolve

Coin stuff

 CoinFactorizat ion – factorizat ion code
• From some t ime ago
• Modif ied for extra sparsity coding
• Forrest- Tomlin update

 CoinPresolve – used by ClpPresolve (and by OsiPresolve)
 CoinMpsIO etc
 CoinIndexedVector
 CoinPackedMatrix

Simplex algorithms

 Dual

• Very good description of what is in Clp dual -

• Progress in the Dual Simplex Algorithm for Solving Large Scale LP
Problems: Techniques for a fast and stable implementation. Achim
Koberstein (koberstein@dsor.de)

• Art if icial (increasing) bounds on variables to get dual feasible

 Primal

• Still after all this t ime needs better pricing on long thin problems – but see
example.

• Art if icial (increasing) costs on infeasible variables – ClpNonLinearCost

• Can be extended to piecewise linear objective

LB UB

Documentation :-)

 When I get t ime

 As I said - very good description of what is in Clp dual -

• Progress in the Dual Simplex Algorithm for Solving Large Scale LP
Problems: Techniques for a fast and stable implementation. Achim
Koberstein (koberstein@dsor.de)

 Use examples

• decompose.cpp

• dualCuts.cpp

• sprint.cpp

• This I can/ will add to.

 Ideas on how to improve things – wiki? - Q & A

mailto:koberstein@dsor.de

First example - sprint

 Example of way I think about building algorithms and using simplex

 Originally developed for American Airlines crew scheduling
problems

 Same idea with variations used in most of my attempts to solve very
large problems for IBM e.g. 15,285 rows 5,555,167 variables – 13
seconds.

• Get a feasible solution (possibly art if icial)

• Fix part of problem so size and complexity much reduced

• Solve using simplex (normally primal)

• If good drop in object ive value – repeat – else

• Go to normal simplex (so “algorithm” is f inite)

 Example assumes first few variables give feasible solution (no
bounds)

• For real example see Clp/ examples/ sprint.cpp

So lets try something bigger

• This new data has 41,059,147 variables and 119,412 constraints!

• Hours to download

• Five minutes to read in

• Four minutes to solve

• That was part of USA – so now we are going for whole of USA

• An example of “medium”real world data exploding

• Many people

• Many skills

• but then sensible algorithm brings it back down to plausible

• As an aside this is a case where problem gets more diff icult as importance of
individual decisions decreases – Tanker (ship) scheduling easy, planes harder,
trucks harder, people harder

• On the other hand exact optima less important

Generalized Upper Bounds

• Most (> 90%) of problem is non- overlapping constraints -

• If m rows then at most m basic columns so most GUB rows will just
have one basic.

• So like simple upper bounds much of work is bookkeeping

• But needs factorizat ion – but we can work with reduced basis

• Nice algorithm but delicate

∑ xij = bi

A B
C D

A − B D−1 C

Sprint approach

• Most (> 90%) of problem is non- overlapping GUB constraints

• If each such constraint has many members then candidate for sprint

• Change select ion criterion to concentrate on subset of constraints

• If only one (basic) selected in a GUB constraint we can take out of
small problem and recompute dual after solut ion

• So number of rows can be dramatically lower

• As with ordinary sprint surprising how few iterat ions

Ex OsiSimplexInterface
now all in OsiSolverInterface

• Misguided attempt to allow user to build an algorithm

• Now broken out so a solver says what it can do

• None of the methods

• Tableau stuff e.g. Updated row (Cplex, Clp)

• Pivoting (Clp)

• I don't think best way to allow user to do it – but what is?

• Enough interest that I shouldn't just try and kill it .

Standalone Solver

• Fairly primitive – glad if someone would make more
elegant

• Command line and/ or interactive

• Double parameters

• Int parameters

• Keyword parameters

• Actions

• Documented?

• Undocumented??

• Can produce reference list of parameters/ actions

– Of course this uses an undocumented option :-)

Double parameters

• DualBound – init ial fake “box” for variables

• DualTolerance – for reduced costs

– Larger values can be faster in dual (Devex ratio
effect)

• PreTolerance – infeasibilit ies in presolve less than this
will be fixed up (rather than declared infeasible).

• PrimalTolerance – for primal infeasibilit ies

– Larger values can be faster in primal

• PrimalWeight – init ial extra cost for being infeasible

• Seconds – treat as maximum iterations after this time

Int parameters

• IdiotCrash – number of passes in idiotic crash

– - 1 primal makes up own mind, 0 off

• LogLevel – increases amount of printout (0= = off)

• MaxFactor – maximum number of iterations between
refactorizations – if default of 200 will compute

• MaxIterations – stop after this many iterations

• OutputFormat – for exporting model controls number
of values per line and accuracy of values.

• Sprint - number of passes in sprint algorithm

– - 1 primal makes up own mind, 0 off

Keyword parameters (some)

• Direction – min, max, zero (also maximize as action)

• ErrorsAllowed – off,on – whether to allow errors in
import

• KeepNames – on,off – whether to keep names after
import

• Messages - off,on – whether to add Clpnnnn to
messages

• Perturbation – on,off – whether to perturb problem

• Presolve – on,off – whether to do presolve

• PrintingOptions – normal, integer, all (+ others)

• Scaling – auto,off, equi, geo – whether to scale problem

Actions 1

• BasisIn file – reads in mps basis

• BasisOut file – creates mps basis

• Export file – creates mps matrix file

• Import file – reads in mps matrix file

• PrintMask mask – solution only prints names which
match

• RestoreModel file – restores dumped model

• SaveModel file – dumps model to file

• SaveSolution file – saves solution in simple format

• Solution file (or stdout) – prints solution

Actions 2

• AllSlack – resets solution to all slack – for
experimentation

• Barrier – not strong point – may bring up in Q&A

• DualSimplex

• Maximize

• Minimize

• PrimalSimplex

• Solve – for uniformity with Cbc

• UserClp – placeholder so user can modify Clpmain.cpp

• Stop, end, exit, quit

Undocumented stuff

• ObjectiveScale value – scale objective by this (in solve)

• RhsScale value – scale bounds etc by this (in solve)

• ReallyObjectiveScale value – scale objective in model

– Can be - 1.0 for stress testing or other for exporting

• ReallyScale – scale model (not just in solve)

• PassPresolve, preOpt, substitution – presolve tuning

• Dualize – make and solve dual model (experimental)

• PertValue – fine tuning of perturbation

• SpecialOptions – as in ClpSimplex.hpp

• Network, plusMinus – massage matrix for speed

Five minute contest

• Suggested model – Data/ miplib3/ dano3mip

– But you can choose another one

• Run with just “clp file” gives presolve and dual

• Try options – e.g.

– - presolve off

– - dualTolerance 1.0e- 6

– - crash

• Fastest buys me a drink

• Partly for a break

Code generat ion ?

• Standalone solver makes it easy to experiment and find
fast way of solving problem

• But what if you want to build model rather than read an
mps file?

• Or what if you want to set a parameter you can find in
ClpSimplex.hpp but not in solver?

• Up to now it was difficult to transfer settings but ...

• Cpp option – use it before the primalSimplex or
dualSimplex and a file user_driver.cpp will be produced.

• The Makefile in Clp/ examples can be used.

Interior Point

• Not my strong point – about as good as OSL's

– Needs a bit more work on crossover to simplex

• Solves QPs as well

– Solves most of test sets but can use too much
memory

– Crossover not implemented yet

• No reasonable native Cholesky ordering

– Use Anshul Gupta's WS(S)MP package or

– Use AMD or CHOLMOD code from U Florida

• So- so Cholesky factorization so use above

• Help!

Quadrat ic object ives

• Even less of a strong point – about as good as OSL's

– Active set method

– Not really quadratic – any nonlinear objective if
methods coded

– May do big push – but is it needed?

• Sequential Linear Program method also in

– Robust – often best method is to do some passes
with SLP and then go to Quadratic Simplex (often 0
iterations)

– Again not restricted to quadratic

• Help! Q & A point – how comprehensive should CLP be?

CoinModel

• Designed to be flexible and fastish way of building a
model

• addRow and addColumn

• setElement(i,j,value)

• getElement(i,j) (also by name)

• setRowLower etc etc

• Iterate over row or column

• Symbolic values

• Example - Clp/ examples/ addRows.cpp

More examples

• Internals of Clp – how to create your own matrix class

– Reduce storage and increase speed?

– ClpPackedMatrix has more than needed for many
cases so creation is simpler than you think

• How to decompose a matrix and do Dantzig Wolfe

– Example of using Clp (applicable to Osi)

• Whatever you suggest and I will try and describe how I
would go about it ?

Matrix class needs

• Constructors etc

– Default, from CoinPackedMatrix and other useful

– = , clone and destructor

• Times, transposeTimes, sophisticated transposeTimes
and subsetTransposeTimes

• CountBasis and fillBasis for creating basis

• Unpack, unpackPacked - unpack one column

• Add – add a column into a CoinIndexedVector

• RangeOfElements – largest smallest in matrix

• Extra needed if scaling will be used

 What is missing and should it be in?
• For experimentat ion
• For heavy duty use
• For teaching

 What should be improved – priorit ize?
• As above

 Redesign to make it easier to replace?
 Replacement factorizat ion project?
 Matrices for speed

Future of Clp

Sim p lex cod es I h ave kn own

Name Year? Contrib Comments
None 1966 100 Paper tape generalized gub
LP 90/94 1967 0 First real code – tape – used QP
Alligator 1967 1 Over designed – tape
Umpire 1969 25 Very influential – drum (so F-T)
Sciconic 1974 High Clean rewrite of Umpire – mainly in memory
Lamps 1980 100 First code for mini-computers?
None 1982 100 LP code for BBC micro!
Lantern 1983 100 LP code for microcomputers
SQL-LP 1986 100 Failure to do modeling/solving
MPSX/370 1987 Small Vector processing
YKTLP 1988 100 First code > 32000 rows
OSL 1989 50 Commercial extension of YKTLP
Child-of-OSL 1997 100 Attempt at parallel code
Clp 2002 High
Child-ofClp 2007 Small Greatest Code ever written

 Sprint – Clp/ examples/ sprint.cpp
• sprintEasy2.cpp and sprintEasy.cpp (with nw04a)

 ClpSmallMatrix .?pp and testSmall.cpp in Clp/ examples
 addRows.cpp in Clp/ examples
 For some help – clp - verbose 11 - ?

Referenced code

