
Revised: July 18, 2006 10:10 1 of 28

Overview of the PEBBL and PICO Projects:
Massively Parallel Branch and Bound

Jonathan Eckstein
Business School and RUTCOR

Rutgers University

Joint work with a large team, mostly from Sandia
National Laboratories, and in particular

William E. Hart
and

Cynthia A. Phillips

July, 2006

My work supported by SNL and NSF (CCR 9902092)

Revised: July 18, 2006 10:10 2 of 28

(New) Distinction between PEBBL and PICO

Until summer 2006, PEBBL was part of PICO
• PEBBL was called the “PICO core”
• What is now PICO was called the “PICO MIP”

Specific applications

PICO -- Parallel Integer and Combinatorial Optimization
Specific to mixed integer programming

PEBBL -- Parallel Enumeration and Branch and Bound Library
Generic parallel branch and bound

Revised: July 18, 2006 10:10 3 of 28

PEBBL and PICO are part of ACRO
A Common Repository for Optimizers

http://software.sandia.gov/acro
• Collection of open-source software arising from work at Sandia

National Laboratories
• Generally lesser GNU public license

UTILIB

PEBBL

GNLP

PICO Coliny
APPSPACK

ParPCx

OPT++

Revised: July 18, 2006 10:10 4 of 28

PEBBL/PICO Applications

Direct use of PEBBL
• Peptide-protein docking (quadratic semi-assignment)

GNLP (includes PEBBL)
• PDE Mesh design
• Electronic package design

PICO (includes PEBBL)
• JSF inventory logistics
• Peptide-protein docking
• Transportation logistics
• Production planning
• Sensor placement
• ...

Revised: July 18, 2006 10:10 5 of 28

PEBBL/PICO Package Relationships

PEBBL

UTILIB

CGL

CLP

GLPK

Soplex

CPLEX

COIN

OSI

PICO

Revised: July 18, 2006 10:10 6 of 28

For remainder of talk, focus on PEBBL

PEBBL is a parallel “branch and bound shell”

Key features
• Object oriented design with serial and parallel layers
• Application interface via manipulation of problem states
• Variable search “protocols” as well as search orders
• Flexible, scalable parallel work distribution using processor

clusters
• Non-preemptive thread scheduling on each processor
• Checkpointing
• (Enumeration support)
• Alternate parallelism support during ramp-up phase

Revised: July 18, 2006 10:10 7 of 28

Basic C++ Class Structure: Serial and Parallel Layers

Optionally custom-parallelize
• Dynamic global data
• Ramp-up phase

PEBBL Serial Layer

Application

PEBBL Parallel Layer

Parallel Application
Tell PEBBL how to pack/

unpack problem data

Revised: July 18, 2006 10:10 8 of 28

PEBBL Structure: Serial and Parallel Layers
Application Development Sequence

Describe application to PEBBL

Debug in serial environment

Tell PEBBL how to pack and unpack problem/subproblem messages

Run in parallel environment without additional programming effort

(optional)

Enhance default parallelization: global information, ramp-up, etc.

Revised: July 18, 2006 10:10 9 of 28

PEBBL Serial Layer Design
• Class derived from branching holds data global to problem.
• Class derived from branchSub holds subproblem data and

pointer back to global data (as in ABACUS).

• Key point: problems in the pool remember their state.

Search
“Framework”

Search
“Handler”

SP
SP SP

SP

Pool

Implemented so far:
eager, lazy,
“hybrid”

SP Implemented so far:
heap, heap+dive,
stack, FIFO-queue

SP SP

SP
Current Subproblem

Revised: July 18, 2006 10:10 10 of 28

Standard Subproblem State Sequence

PEBBL interacts with the application solely through virtual functions that
cause state transitions (/ /)

Children
dead

boundable

beingBounded

bounded

separated

beingSeparated

bound

split

makeChild

Revised: July 18, 2006 10:10 11 of 28

Search Handler: Lazy

Pool consists of boundable subproblems

Extract SP from pool

Try to Separate

Try to bound

Extract child

Insert child into pool

No more children

= if fathomed
or dead

Revised: July 18, 2006 10:10 12 of 28

Search Handler: Eager

Pool consists of bounded subproblems

Extract SP from pool

Try to bound child

Extract child

Insert child into pool

No more children

Try to Separate

Revised: July 18, 2006 10:10 13 of 28

Search Handler: “Hybrid”/General

Pool can contain problems in any mix of states.

No more
children

Any other
state

separated
Look at SP from pool

Try to advance one state
Extract child

Insert child into pool

Delete SP from pool

Revised: July 18, 2006 10:10 14 of 28

Generality of Approach

Naturally accommodates an wide range of branch-and-bound
algorithm variations

Most known variations are possible by combining
• Three existing handlers
• Stack and heap pools
• Proper implementation of virtual functions for application

Also:
• Other pool implementations are possible
• Other handlers possible

Revised: July 18, 2006 10:10 15 of 28

Parallel Layer: User-Adjustable Clustering Strategy
• Processors are collected into clusters
• One processor in the cluster is a hub (central controller for cluster)
• Other processors are workers (process subproblems)
• Optionally, a hub can be a worker too (depends on cluster size)

Hub

(Worker)

Processor 1

Worker

Processor 2

Worker

Processor 3

Worker

Processor 4

Cluster 1

Hub

(Worker)

Processor 5

W

Pro

Worker

Processor 7

W

Pro

Cluster 2

Revised: July 18, 2006 10:10 16 of 28

Extreme Case: Central Control

Hub

Processor 1

Worker

Processor 2

Worker

Processor 3

Worker

Processor 4

Worker

Processor 5

Worker

Processor 6

Worker

Processor 7

Worker

Processor 8

Worker

Processor 9

Revised: July 18, 2006 10:10 17 of 28

Extreme Case: Fully Decentralized Control

Hub

Worker

Processor 1

Hub

Worker

Processor 2

Hub

Worker

Processor 3

Hub

Worker

Processor 4

Hub

Worker

Processor 5

Hub

Worker

Processor 6

Hub

Worker

Processor 7

Hub

Worker

Processor 8

Hub

Worker

Processor 9

Revised: July 18, 2006 10:10 18 of 28

Work Transmission: Within a Cluster

Hub processes deal with tokens only. A token =
• # of creating processor
• Pointer to creating processor’s memory
• Serial number
• Bound
• (Any other information needed in work scheduling decisions)

Prevents irrelevant information from
• Overloading memory at hubs
• Wasting communication bandwidth in and out of hubs

Remaining subproblem information sent directly between workers
when necessary

Revised: July 18, 2006 10:10 19 of 28

Within a Cluster: Adjustable Behavior

Worker has its own local pool (buffer) of subproblems

Chance of returning a processed subproblem (or child) into the
worker pool:

• 0% pure master-slave, hub makes all decision (fine for tightly-
coupled hardware and time-consuming bounds).

• 100% hub “monitors” workers but doesn’t make low-level
decisions (better for workstation farms).

• Continuum of choices in between...

Backup “rebalancing” mechanism to make sure that hub controls
enough subproblems

• Otherwise hub might be “powerless” in some situations
• Rebalancing uncommon for standard parameter settings

 ⇒

 ⇒

Revised: July 18, 2006 10:10 20 of 28

Work Transmission: Between Clusters

Load balancing between clusters via
• Random scattering upon subproblem creation, supplemented by...

Rendezvous load balancing:
• Non-hierarchical: there is no “hub-of-hubs” or “master-of-masters”
• Hubs are organized into a tree

• Periodic message sweeps up and down tree summarize overall load
balance situation

• Efficient method for matching underloaded and overloaded
clusters, followed by pairwise work exchange

• Not “work stealing” (receiver initiated)
• Not “work sharing” (sender initiated)

Revised: July 18, 2006 10:10 21 of 28

Non-Preemptive Threads on Each Processor

Each processor must do a certain amount of multi-tasking

Schedule multiple threads of control within each processor
• Each task gets a thread.
• Threads can share memory.
• We use a scheduler to allocate CPU time to threads.

Scheduler uses non-preemptive multitasking approach
(à la old Macs, Win 3.x):

Scheduler

Thread 1

Thread 2

Thread 3

Revised: July 18, 2006 10:10 22 of 28

Base Scheduler Setup

• Upper group: each thread waits for a specific kind of message
• Wakes up; processes message; posts another receive request; sleeps again

• Base group: usually ready to run
• Worker does work usually handled by serial layer
• Continuously adjusts amount of work at each invocation to try to match a

target time slice
• CPU time allocated in specifiable proportion via stride scheduling

Message-Triggered Group

Base Computation Group

Incumbent value broadcast SP server

Hub Load balancing/termination detect

Worker Incumbent search heuristic (optional)

SP receiver

Typically waiting for messages

Worker auxiliary

Revised: July 18, 2006 10:10 23 of 28

Incumbent Search Thread

Implements application-specific search heuristic; could be:
• Tabu
• GA
• etc...

Can send messages to other processors
• e.g. a parallel GA

Has small quantum for easy interruption

Soaks up cycles when worker thread is blocked or waiting

Can adjust priority as run proceeds
• High early on
• Lower later when we’re probably just proving (near) optimality of

current incumbent

Framework allows smooth blending of parallel search heuristics
with branch-and-bound.

Revised: July 18, 2006 10:10 24 of 28

Termination

General issue with asynchronous message-passing programs.

Make sure:
• All the work is really gone
• There are no stray unreceived messages floating around

PICO uses the “four counters” method of Mattern et. al

Handled by load balancing thread

Sent = Received? Recheck Sent = Received

Revised: July 18, 2006 10:10 25 of 28

Checkpointing (Relatively New)
• Systems crash
• Jobs exceed time quotas, ...

Don’t want to lose all your work when that happens!
• Periodically save state of computation
• Later, you can restart from the saved state

Implementation in PEBBL:
• Load balancer message sweep signals it’s time to checkpoint
• Workers and hubs turn “quiet”: don’t start new communication
• Use standard termination check logic to sense when all messages

have arrived
• Each processor writes a (possibly local) checkpoint file

Restart options
• Normal: each processor reads its own file (possibly in parallel)
• Read serially, redistribute -- allows different number of processors

Revised: July 18, 2006 10:10 26 of 28

Ramp-Up: Starting the Search

There may be multiple sources of parallelism in any branch and
bound application (not just MIP):

• Parallelism from large search tree (generic)
• Parallelism within each subproblem (application-specific)

Early in the search
• Tree is small
• Within-subproblem parallelism may be especially large
• So, there may be more parallelism available within subproblems

than from the tree
• You also might not want to exploit tree parallelism too aggressively

(likely to work on “non-critical” nodes)

Eventually, tree parallelism will probably dominate (and be safe)

Revised: July 18, 2006 10:10 27 of 28

Generic Ramp-Up Mechanism

• Ramp-Up: all processors redundantly develop top of tree,
synchronously parallelizing some of each subproblem’s work

• Virtual function decides when tree parallelism is likely to be better
• Crossover: partition tree evenly (no commucation!)
• Then start usual asynchronous search (different processors look at

different leaves of the tree)
• PICO uses this feature: parallelizes strong-branching-like

pseudocost initialization until tree offers more parallism

Synchronous
Ramp-Up

?

Crossover Asynchronous
Search

Revised: July 18, 2006 10:10 28 of 28

PEBBL and PICO Availability

ACRO 1.0 available first week of August, 2006
http://software.sandia.gov/acro

Lesser GNU public license

Includes PEBBL 1.0 release:
• Should be stable
• Contains 57-page user guide (will probably grow soon)
• Also, feel free to contact us if interested

PICO -- areas that need more work:
• Cut finders (improve/replace current CGL finders)
• Cut management
• Incumbent heuristic (fairly extensive work done, but more needed)

