
The COIN-OR Open Solver Interface:

Technology Overview

Matthew Saltzman
Mathematical Sciences

Clemson University

László Ladányi
T. J. Watson Research Center

IBM

Ted Ralphs
Industrial and Systems Engineering

Lehigh University

CORS/INFORMS Banff
May 2004

COIN-OR

Outline

• The COIN-OR Project

• COIN-OR Components

• The Current OSI API

• The Next-Generation OSI API

• Conclusion

COIN-OR CORS/INFORMS Banff, 2004 1

What is COIN-OR?

The COIN-OR Project

• A consortium of researchers in industry and academia dedicated to improving the state

of computational research in OR.

• An initiative promoting the development and use of interoperable, open-source

software for operations research.

• Now a non-profit corporation: the COIN-OR Foundation, Inc.

The COIN-OR Repository

• A library of interoperable software tools for building optimization codes, plus

standalone packages.

• A venue for peer review of OR software tools.

• A development platform for open source projects, including a CVS repository and

other tools.

COIN-OR CORS/INFORMS Banff, 2004 2

Our Agenda

• Accelerate the pace of research in computational OR.

– Reuse instead of reinvent.

– Reduce development time and increase robustness.

– Increase interoperability.

• Provide for software what the open literature provides for theory.

– Peer review of software.

– Free distribution of ideas.

– Promotion of principles of good scientific research.

• Define standards and interfaces that allow software components to interoperate.

• Increase synergy between various development projects.

• Provide robust, open-source tools for practitioners.

COIN-OR CORS/INFORMS Banff, 2004 3

Components of the COIN-OR Library

COIN Util OSI CGL BCP VOL CLP SBB

COIN

DFO OTSIPOPTNLPAPI MULTIFARIOSMI

• Branch-cut-price toolbox

– COIN Utilities

– OSI: Open Solver Interface

– CGL: Cut Generator Library

– BCP: Branch-Cut-Price Framework

– VOL: Volume Algorithm

– CLP: COIN-OR LP Solver

– SBB: Simple Branch & Bound

• Other components

– SMI: Stochastic Modeling Interface

– NLPAPI: Nonlinear Solver Interface

– IPOPT: Interior Point Optimization

(Nonlinear)

– DFO: Derivative Free Optimization

– MULTIFARIO: Solution Manifolds

– OTS: Open Tabu Search

COIN-OR CORS/INFORMS Banff, 2004 4

The Open Solver Interface Component

Purpose:

• A single API providing access to a variety of embedded solver libraries.

• Originally conceived as a “sandbox” for research on cutting planes, etc.

Current version features:

• Create/modify LP/MIP model loaded in solver.

• Access basic features of LP solvers.

• Modify model (add cutting plane inequalities generated via CGL) and resolve.

• Add-on provides access to simplex-specific features (only supported for some solvers).

• Can call MIP solver.

COIN-OR CORS/INFORMS Banff, 2004 5

Supported Solvers

• COIN-LP (COIN-OR LP Solver, open source)

• CPLEX (ILOG, commercial)

• dylp (BonsaiG LP Solver, open source)

• FortMP (OptiRisk Systems, commercial)

• GLPK (GNU LP Kit, open source)

• Mosek (Mosek ApS, commercial, under construction)

• OSL (IBM, commercial)

• SoPlex (Konrad-Zuse-Zentrum für Informationstechnik Berlin, free for academic use)

• Volume (COIN-OR, open source)

• XPRESS (Dash Optimization, commercial)

• Add yours here. . .

COIN-OR CORS/INFORMS Banff, 2004 6

Basic Design (Current)

Yyy Callable Library

OsiSolverInterface

OsiXxxSolverInterface OsiYyySolverInterface

Xxx Callable Library

User Code

• C++ classes

– OsiSolverInterface base class

– OsiXxxSolverInterface derived class for solver Xxx

• User writes code once using OSI API.

• Code works “out of the box” with any supported solver.

• Solver is instantiated as part of declaration of problem object.

– Can be hidden from most of user code through object cloning.

– Change solvers by recompiling main(), relinking.

COIN-OR CORS/INFORMS Banff, 2004 7

Example main()

#if defined(COIN_USE_CPX)

#include "OsiCpxSolverInterface.hpp"

typedef OsiCpxSolverInterface

RealSolverInterface;

#elif defined(COIN_USE_OSL)

#include "OsiOslSolverInterface.hpp"

typedef OsiOslSolverInterface

RealSolverInterface;

#elif defined(COIN_USE_XPR)

#include "OsiXprSolverInterface.hpp"

typedef OsiXprSolverInterface

RealSolverInterface;

#else

#error "Must define a solver."

#endif

void solve(

const OsiSolverInterface *emptySi,

const char *mpsfile,

const double minmax);

int main(int argc, const char *argv[])

{

// Arg 1: filename

// Arg 2: "min" or "max"

// Set minmax = 1.0 for min, -1.0 for max.

// Instantiate solver interface

RealSolverInterface si;

solve(&si, filename, minmax);

return 0;

}

COIN-OR CORS/INFORMS Banff, 2004 8

Example solve()

#include <iostream>

#include "OsiSolverInterface.hpp"

void solve(const OsiSolverInterface *emptySi,

const char *mpsfile, const double minmax)

{

// *si dynamically inherits derived class of *emptySi.

OsiSolverInterface *si = emptySi->clone();

si->readMps(fn, "mps"); // Read problem

si->setObjSense(minmax); // Set objective sense

si->initialSolve(); // Solve continuous problem

std::cout << "LP rel value: " << si->getObjValue() << std::endl;

// Iteratively add cuts and resolve...

si->branchAndBound(); // Solve MIP Problem

std::cout << "Obj fn value: " << si->getObjValue() << std::endl;

const double * soln = si->getColSolution();

for (int i = 0; i < si->getNumCols(); i++)

std::cout << "x[" << i << "] = " << soln[i] << std::endl;

}

COIN-OR CORS/INFORMS Banff, 2004 9

Next Generation: Design Goals

• Solver independence.

– Consistent problem representation across solvers.

– Consistent algorithm behavior across solvers (as far as possible).

• Thin wrapper layer.

• Portable (ANSI/ISO C++), standard, open.

• Usable.

• Flexible, extensible.

– Separate OsiModel and OsiAlgorithm base classes.

– Multiple derived model classes.

– Multiple derived algorithm classes. Parameters, status information, solutions, etc.,

appropriate for algorithm.

– A model is not bound to a solver until an algorithm is invoked.

COIN-OR CORS/INFORMS Banff, 2004 10

Example Class Hierarchy

OsiLinearConstraintModel

OsiLinearProgramModel OsiQuadraticProgramModel

OsiModel

OsiAlgorithm

OsiSimplexAlgorithm OsiBarrierAlgorithm

OsiXxxWrapper

Xxx Callable Library

COIN-OR CORS/INFORMS Banff, 2004 11

Consistent Problem Representation/Behavior

• “Solver independent” vs. “solver agnostic”

– Base class can create/view/modify a complete problem/solution representation.

• User sees consistent view of problem no matter which solver is used.

– MPS file represents the same problem no matter which solver is used.

• User has some options (e.g., row bounds vs. rhs type-value-range) not tied to solver.

• Solver internal memory management is transparent to the user.

COIN-OR CORS/INFORMS Banff, 2004 12

OsiModel Design Features

• An OsiModel is a collection of OsiVariable and OsiConstraint objects.

• Each such object has an associated OsiDomain—a type (e.g., continuous, integer,

semi-continuous, etc.) and an interval. An OsiConstraint also defines a function

that produces its value.

• OsiConstraints may serve as constraints or objectives.

• Derived classes can implement specially-structured constraints and objectives.

– e.g., OsiLinearConstraintModel implements constraints using

CoinSparseMatrix.

• Objects of types derived from OsiModel can be manipulated without being bound to

an underlying solver.

COIN-OR CORS/INFORMS Banff, 2004 13

Memory Management

Goal: Minimize performance penalty for extra layer.

• Passing a model to an algorithm must copy or transfer the model to the solver’s

internal representation (copy in/out vs. pointer-based).

• Once loaded, changes to the model must be reflected transparently to the solver’s

internal representation.

• The wrapper layer must do the minimum work necessary to maintain synchronization.

Any caching of model data outside the solver’s internal representation must be

handled in the base class.

• Cache should be controllable by user (speed/size tradeoff).

COIN-OR CORS/INFORMS Banff, 2004 14

Cache Management

• Wrapper class

– Get:

Query base class for cached copy.

If cached copy does not exist, query solver and cache result.

Return pointer to cached result.

– Set:

Update solver copy.

Pass mods through to model or solver base class.

• Base class

– Get:

Return cached copy.

– Set:

Update or delete cached copy in model object..

COIN-OR CORS/INFORMS Banff, 2004 15

Complete Algorithm Feature Set

• Solver Interface should (as much as possible) support features of underlying callable

library.

• At least core features required for efficient use of embedded solver

(algorithm-specific). E.g., for simplex codes:

– Warm starts with user-defined basis.

– Pivot-level control.

– Equation solving with basis matrix (FTRAN/BTRAN).

• Solution/warm-start classes are algorithm class dependent.

• Embedded solver representation can be accessed for direct calls to solver API

(solver-dependent, not portable).

COIN-OR CORS/INFORMS Banff, 2004 16

Messaging

• Should not be tied to a particular interface (e.g., stdout/stderr vs. GUI dialog boxes).

• Should not be tied to a particular language (i18n).

Currently:

• CoinMessageHandler class provides rudimentary message channel interface.

• Complex message handlers can be created as derived classes.

• Each component provides XxxMessage class containing list of index-message pairs.

COIN-OR CORS/INFORMS Banff, 2004 17

Solver Parameters

Goal: Unified parameter handling mechanism across all solvers.

Design:

• Common list of parameters and values for OSI layer.

• Database mapping OSI parameters to solver parameters and types (supplied in

OsiXxxWrapper).

• Solvers should degrade gracefully if they don’t understand “hints”.

COIN-OR CORS/INFORMS Banff, 2004 18

Conclusion

Build a better solver interface. . .

COIN-OR CORS/INFORMS Banff 2004

Conclusion

Build a better solver interface. . .

. . . and the world will beat a path to your CVS repository.

COIN-OR CORS/INFORMS Banff 2004

