The COIN-OR Open Solver Interface:
Technology Overview

Matthew Saltzman Laszlo Ladanyi
Mathematical Sciences T. J. Watson Research Center
Clemson University IBM
Ted Ralphs

Industrial and Systems Engineering
Lehigh University

CORS/INFORMS Banff
May 2004

COIN-OR

Outline

e The COIN-OR Project

e COIN-OR Components

e The Current OSI API

e The Next-Generation OSI API
°

Conclusion

COIN-OR CORS/INFORMS Banff, 2004 1

What is COIN-OR?

The COIN-OR Project

e A consortium of researchers in industry and academia dedicated to improving the state
of computational research in OR.

e An initiative promoting the development and use of interoperable, open-source
software for operations research.

e Now a non-profit corporation: the COIN-OR Foundation, Inc.
The COIN-OR Repository

e A library of interoperable software tools for building optimization codes, plus
standalone packages.

e A venue for peer review of OR software tools.

e A development platform for open source projects, including a CVS repository and
other tools.

COIN-OR CORS/INFORMS Banff, 2004 2

Our Agenda

e Accelerate the pace of research in computational OR.

— Reuse instead of reinvent.
— Reduce development time and increase robustness.
— Increase interoperability.

e Provide for software what the open literature provides for theory.

— Peer review of software.
— Free distribution of ideas.
— Promotion of principles of good scientific research.

e Define standards and interfaces that allow software components to interoperate.
® Increase synergy between various development projects.

e Provide robust, open-source tools for practitioners.

COIN-OR CORS/INFORMS Banff, 2004 3

Components of the COIN-OR Library

COIN

SMI NLPAPI | POPT

DFO

MULTIFARIO OTS

e Branch-cut-price toolbox

COIN-OR

COIN Utilities
OSI: Open Solver Interface
CGL: Cut Generator Library

BCP: Branch-Cut-Price Framework

VOL: Volume Algorithm
CLP: COIN-OR LP Solver
SBB: Simple Branch & Bound

Other components

— SMI: Stochastic Modeling Interface

— NLPAPI: Nonlinear Solver Interface

— IPOPT: Interior Point Optimization
(Nonlinear)

— DFO: Derivative Free Optimization

— MULTIFARIO: Solution Manifolds

— OTS: Open Tabu Search

CORS/INFORMS Banff, 2004 4

The Open Solver Interface Component

Purpose:

e A single API providing access to a variety of embedded solver libraries.

e Originally conceived as a “sandbox” for research on cutting planes, etc.
Current version features:

Create/modify LP/MIP model loaded in solver.

Access basic features of LP solvers.

°
°

e Modify model (add cutting plane inequalities generated via CGL) and resolve.

e Add-on provides access to simplex-specific features (only supported for some solvers).
°

Can call MIP solver.

COIN-OR CORS/INFORMS Banff, 2004 5

Supported Solvers

COIN-LP (COIN-OR LP Solver, open source)
CPLEX (ILOG, commercial)

dylp (BonsaiG LP Solver, open source)

FortMP (OptiRisk Systems, commercial)

GLPK (GNU LP Kit, open source)

Mosek (Mosek ApS, commercial, under construction)
OSL (IBM, commercial)

SoPlex (Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, free for academic use)
Volume (COIN-OR, open source)

XPRESS (Dash Optimization, commercial)

e Add yours here. ..

COIN-OR CORS/INFORMS Banff, 2004 6

o C++ classes

Basic D

esign (Current)

User Code

Csi Sol verl nterface

Gsi XxxSol verl nterface Gsi YyySol verlnterface

Xxx Callable Library

Yyy Callable Library

— QOsiSolverInterface base class
— OsiXxxSolverlnterface derived class for solver Xxx

e User writes code once using OSI API.

e (Code works “out of the box" with any supported solver.

e Solver is instantiated as part of declaration of problem object.

— Can be hidden from most of user code through object cloning.
— Change solvers by recompiling main (), relinking.

COIN-OR

CORS/INFORMS Banff, 2004

7

COIN-OR

Example main()

#if defined(COIN_USE_CPX)
#include "OsiCpxSolverInterface.hpp"

typedef OsiCpxSolverInterface
RealSolverInterface;

#elif defined(COIN_USE_OSL)

#include "OsiOslSolverInterface.hpp"

typedef OsiOslSolverInterface
RealSolverInterface;

#elif defined(COIN_USE_XPR)

#include "OsiXprSolverInterface.hpp"

typedef OsiXprSolverInterface
RealSolverInterface;

#else

#error "Must define a solver."

#endif

void solve(
const OsiSolverInterface *emptySi,
const char *mpsfile,
const double minmax);

int main(int argc, const char *argv[])
{
// Arg 1: filename
// Arg 2: "min" or "max"
// Set minmax = 1.0 for min, -1.0 for max.

// Instantiate solver interface
RealSolverInterface si;

solve(&si, filename, minmax);
return O;

CORS/INFORMS Banff, 2004

Example solve()

#include <iostream>
#include "OsiSolverInterface.hpp"

void solve(const OsiSolverInterface *emptySi,

{

const char *mpsfile, const double minmax)

// *si dynamically inherits derived class of *emptySi.
OsiSolverInterface *si = emptySi->clone();

si->readMps(fn, "mps"); // Read problem
si->setObjSense(minmax); // Set objective sense

si->initialSolve(); // Solve continuous problem
std::cout << "LP rel value: " << si->getObjValue() << std

// Iteratively add cuts and resolve...

si->branchAndBound () ; // Solve MIP Problem
std::cout << "Obj fn value: " << si->getObjValue() << std

const double * soln = si->getColSolution();
for (int i = 0; i < si->getNumCols(); i++)

::endl;

::endl;

std::cout << "x[" << i << "] = " << soln[i] << std::endl;

COIN-OR

CORS/INFORMS Banff, 2004

9

Next Generation: Design Goals

e Solver independence.

— Consistent problem representation across solvers.
— Consistent algorithm behavior across solvers (as far as possible).

Thin wrapper layer.
Portable (ANSI/ISO C++), standard, open.
Usable.

Flexible, extensible.

— Separate OsiModel and OsiAlgorithm base classes.

— Multiple derived model classes.

— Multiple derived algorithm classes. Parameters, status information, solutions, etc.,
appropriate for algorithm.

— A model is not bound to a solver until an algorithm is invoked.

COIN-OR CORS/INFORMS Banff, 2004 10

Example Class Hierarchy

Csi Model
Csi Li near Const r ai nt Mbdel
Gsi Li near Pr ogr amvbdel Gsi Quadr at i cProgr anivbdel

COIN-OR CORS/INFORMS Banff, 2004 11

Consistent Problem Representation/Behavior

e “Solver independent” vs. “solver agnostic”
— Base class can create/view/modify a complete problem /solution representation.

e User sees consistent view of problem no matter which solver is used.
— MPS file represents the same problem no matter which solver is used.

e User has some options (e.g., row bounds vs. rhs type-value-range) not tied to solver.

e Solver internal memory management is transparent to the user.

COIN-OR CORS/INFORMS Banff, 2004 12

OsiModel Design Features

e An OsiModel is a collection of OsiVariable and OsiConstraint objects.

e Each such object has an associated OsiDomain—a type (e.g., continuous, integer,
semi-continuous, etc.) and an interval. An OsiConstraint also defines a function
that produces its value.

e OsiConstraints may serve as constraints or objectives.

e Derived classes can implement specially-structured constraints and objectives.

— e.g., OsiLinearConstraintModel implements constraints using
CoinSparseMatrix.

e Objects of types derived from OsiModel can be manipulated without being bound to
an underlying solver.

COIN-OR CORS/INFORMS Banff, 2004 13

Memory Management

Goal: Minimize performance penalty for extra layer.

e Passing a model to an algorithm must copy or transfer the model to the solver's
internal representation (copy in/out vs. pointer-based).

e Once loaded, changes to the model must be reflected transparently to the solver's
internal representation.

e The wrapper layer must do the minimum work necessary to maintain synchronization.
Any caching of model data outside the solver’s internal representation must be
handled in the base class.

e Cache should be controllable by user (speed/size tradeoff).

COIN-OR CORS/INFORMS Banff, 2004 14

Cache Management

e Wrapper class
- Get:
Query base class for cached copy.
If cached copy does not exist, query solver and cache result.
Return pointer to cached result.
— Set:
Update solver copy.
Pass mods through to model or solver base class.
e Base class

— Get:
Return cached copy.
— Set:

Update or delete cached copy in model object..

COIN-OR CORS/INFORMS Banff, 2004 15

Complete Algorithm Feature Set

e Solver Interface should (as much as possible) support features of underlying callable
library.

e At least core features required for efficient use of embedded solver
(algorithm-specific). E.g., for simplex codes:
— Warm starts with user-defined basis.
— Pivot-level control.

— Equation solving with basis matrix (FTRAN/BTRAN).
e Solution/warm-start classes are algorithm class dependent.

e Embedded solver representation can be accessed for direct calls to solver API
(solver-dependent, not portable).

COIN-OR CORS/INFORMS Banff, 2004 16

Messaging

e Should not be tied to a particular interface (e.g., stdout/stderr vs. GUI dialog boxes).
e Should not be tied to a particular language (i18n).

Currently:

e (CoinMessageHandler class provides rudimentary message channel interface.
e Complex message handlers can be created as derived classes.

e Each component provides XxxMessage class containing list of index-message pairs.

COIN-OR CORS/INFORMS Banff, 2004 17

Solver Parameters

Goal: Unified parameter handling mechanism across all solvers.

Design:

e Common list of parameters and values for OSI layer.

e Database mapping OSI parameters to solver parameters and types (supplied in
OsiXxxWrapper).
e Solvers should degrade gracefully if they don't understand “hints”.

COIN-OR CORS/INFORMS Banff, 2004

18

Conclusion

Build a better solver interface. . .

COIN-OR CORS/INFORMS Banff 2004

Conclusion

Build a better solver interface. . .

... and the world will beat a path to your CVS repository.

COIN-OR CORS/INFORMS Banff 2004

