
COIN-OR Vendor Workshop

Bradley M. Bell, University of Washington
Robin Lougee-Heimer, IBM

Kipp Martin, University of Chicago

October 11, 2008

1

Outline – Where we are headed

The CoinBinary/CoinAll Project and Workshop CD

What Can You Do With CoinAll?

CoinAll Projects Walk Through

Solving Optimization Problems
Use a Modeling Language

Writing Applications Using COIN-OR
Writing Applications – Call a Solver
Writing Applications – Build an Instance
Writing Applications – Add Cutting Planes

2

The CoinBinary Project

Objective: provide executables and libraries (i.e. binaries as
opposed to source code) of key COIN-OR projects.

Users often do not wish to download and compile source code!

The CoinBinary project provides a binary distribution of CoinAll.

CoinAll is a set of key COIN-OR projects – but not all projects.

See: http://www.coin-or.org/download/binary/CoinAll/.

You have a CD with the CoinAll binary distribution.

3

http://www.coin-or.org/download/binary/CoinAll/

The CoinAll CD

The workshop CoinAll CD:

4

The CoinAll CD

The CD with CoinAll contains the following:

I CoinAll-1.2.0 – folders containing the CoinAll release 1.2.0
project compiled on eight different platforms.

I data (.zip and .tgz) – test problems in various formats

I GAMSlinks (.tgz and .zip) – a COIN-OR project for using
the GAMS modeling language with COIN-OR solvers

I Note: the GAMS modeling language must be obtained
seperately

I 7z457.exe – a Windows utility to unzip the zipped files

5

The CoinAll CD

Windows Users: extract the following files from the CD into a
single directory (dc08) on your hard drive:

I CoinAll-1.2.0-VisualStudio.zip

I data.zip

I GamsOS.zip (If you have GAMS on your machine and want to
use COIN-OR solvers with GAMS)

Please move the stylesheets directory in the data directory into
the CoinAll-1.2.0-VisualStudio directory.

6

The CoinAll CD

Windows Users: extracting the files by right-clicking on desired
file and choosing Extract All ...

7

The CoinAll CD

Linux and Mac OS X Users: extract from the CD the following
files into a single directory (dc08) on your hard drive:

I CoinAll-1.2.0-platform-compiler.tgz, for example:

CoinAll-1.2.0-linux-x86-gcc4.2.3.tgz (Linux 32 bit users)

CoinAll-1.2.0-macosx-x86-gcc4.0..tgz1 (Mac OS X users)

I data.tgz

I GamsOS.tgz (If you have GAMS on your machine and want to
use COIN-OR solvers with GAMS)

8

The CoinAll CD

The complete list:

I CoinAll-1.2.0-linux-x86 64-gcc4.1.3

I CoinAll-1.2.0-linux-x86 64-gcc4.2.3

I CoinAll-1.2.0-linux-x86-gcc4.1.3

I CoinAll-1.2.0-linux-x86-gcc4.2.3

I CoinAll-1.2.0-mac-osx-x86-gcc4.0.1

I CoinAll-1.2.0-sunos5-x86 64-gcc4.3.0

I CoinAll-1.2.0-VisualStudio

I CoinAll-1.2.0-win32-icl10.0

9

The CoinAll CD

Linux and Mac OS X Users: unpack your files

tar -xzf /media/cdrom1/data.tgz (Ubuntu)

tar -xzf /Volumes/DC08_workshop/data.tgz (Mac OS X)

Or, using gnome, right-click and select Extract to...

10

What Can You Do With CoinAll?

I Use the solvers out-of-the-box to solve optimization problems

I solve problems in mps, nl, or osil format

I use with modeling languages such as AMPL, GAMS, and MPL

I Write code to call solvers as part of a larger application

I Use the APIs (application program interface) to build models

I Use the APIs to build customized solution procedures (e.g.
cutting planes, column generation, etc.)

I Research/Teaching/Consulting/Business Applications

11

COIN-OR Projects

A few project highlights (among the 30 COIN-OR projects):

I Clp: Coin linear program

Project Manager: John Forrest

I Cbc: Coin branch and cut – an integer programming package

Project Manager: John Forrest

I Ipopt: Interior Point OPTimizer – this came from a
state-of-the-art research code using interior methods to solve
nonlinear optimization problems.

Project Manager: Andreas Wächter

The above packages are used to solve real problems:
https://projects.coin-or.org/Ipopt/wiki/SuccessStories
https://projects.coin-or.org/Cbc/wiki/SuccessStories

12

h
h

COIN-OR Projects

A few other project highlights:

I SYMPHONY: an integer programming package that
supports parallel processing.

Project Manager: Ted Ralphs

I Bonmin: Basic Open-source Nonlinear Mixed INteger
programming is for nonlinear integer programming.

Project Manager: Pierre Bonami

I Osi: Open solver interface – a generic API for mixed integer
linear programs. With this you can call solvers such as Cplex
and Glpk.

Project Manager: Matthew Saltzman

13

COIN-OR Projects

A few other project highlights:

I GAMSlinks: allows you to use the GAMS algebraic modeling
language and call COIN-OR solvers. Not part of CoinAll, but
on the CD.

Project Manager: Stefan Vigerske

I FLOPC++: an open-source modeling language.

Project Manager: Tim Hultberg

I Cgl: Cut Generation Library (Cgl) is an open collection of
cutting plane implementations (”cut generators”) for use in
teaching, research, and applications. Cgl can be used with
other COIN-OR packages that make use of cuts, such as the
mixed-integer linear programming solver Cbc.

Project Manager: Robin Lougee-Heimer and Francois Margot

14

COIN-OR Projects

A few other project highlights:

I CppAD: a project managed by Brad Bell for doing
algorithmic differentiation – a key ingredient in modern
nonlinear optimization codes.

Project Manager: Brad Bell

I Bcp: Branch cut-and-price. Provides, for example, a generic
framework to do column generation.

Project Manager: Laci Ladanyi

15

COIN-OR Projects

A few other project highlights:

I CoinMP: – a callable library that wraps around CLP, CGL,
and CBC, providing C-API interface just like CPLEX,
XPRESS, and LINDO.

Project Manager: Bjarni Kristjansson

I Optimization Services: – a framework for doing distributed
optimization.

Project Manager: Jun Ma, Gus Gassmann, and Kipp Martin

16

Optimization Services (OS)

Optimization Services (OS) integrates numerous COIN-OR
projects. The OS project provides:

I A set of XML based standards for representing optimization
instances (OSiL), optimization results (OSrL), and
optimization solver options (OSoL).

I A robust API for linear and nonlinear problems.

I A command line executable OSSolverService for reading
problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server.

I Utilities that convert AMPL nl files into the OSiL format and
MPS files into the OSiL format.

17

Optimization Services (OS)

OS Continued ...

I Client side software that is used to create Web Services SOAP
packages with OSiL instances and contact a server for
solution.

I Standards that facilitate the communication between clients
and solvers using Web Services.

I Server software that works with Apache Tomcat.

What follows is done using the OS project, rather than projects
individually.

18

Solving a Problem

The Windows Visual Studio distribution has the following directory
structure:

19

Solving a Problem

A Linux distribution has the following directory structure:

20

Solving a Problem

We use the OSSolverService executable to:

I Solve a model instance using a solver that is included in your
distribution. It takes three (four) formats

I AMPL nl format

I the defacto standard mps format (does not handle nonlinear)

I the new OS XML OSiL format (does handle nonlinear)

I GAMS gms format through GAMSlinks

I Use OSSolverService with the OS protocols to communicate
with a remote solver service

21

Solving a Problem

The bin directory contains optimization solver executables.

You can use any of the solver executables individually or you can
use OSSolverService.exe (which is linked to the individual
solvers).

Will will solve the linear program (Par Inc.):

MAX 10 ∗ X1 + 9 ∗ X2

.7 ∗ X1 + X2 ≤ 630

.5 ∗ X1 + (5/6) ∗ X2 ≤ 600

X1 + (2/3) ∗ X2 ≤ 708

.1 ∗ X1 + .25 ∗ X2 ≤ 135

X1, X2 ≥ 0

22

Solving a Problem

Solve a linear program: using the OSSolverService . At the
command line, connect (cd) to the bin directory and execute the
following:

To solve a problem in OSiL XML format

OSSolverService -osil ../../data/osilFiles/parincLinear.osil

To solve a problem in AMPL nl format

OSSolverService -nl ../../data/amplFiles/parinc.nl

To solve a problem in MPS format

OSSolverService -mps ../../data/mpsFiles/parinc.mps

23

Solving a Problem

The result is printed in XML format:

24

Solving a Problem

More detail – variables values

<values>
<var idx="0">539.9842493109073</var>
<var idx="1">252.01102548236486</var>

</values>

The objective function value

<objectives>
<values>
<obj idx="-1">7667.941722450357</obj>
</values>
</objectives>

25

Solving a Problem

You can also print the result to a file.

Use the osrl option

OSSolverService -osil ../../data/osilFiles/parincLinear.osil
-osrl result.xml

You can display the result in a browser using XSLT.

Copy data/stylesheets into the root of the CoinAll distribution.

Open in your browser

26

Solving a Problem

27

Solving a Problem

To solve a linear program set the solver options to:

I clp

I dylp

To solve a mixed-integer linear program set the solver options
to:

I cbc

I symphony

To solve a continuous nonlinear program set the solver options
to:

I ipopt

To solve a mixed-integer nonlinear program set the solver
options to:

I bonmin

28

Solving a Problem

Solving a linear integer program:

OSSolverService -osil ../../data/osilFiles/p0033.osil
-solver cbc

Solving a nonlinear optimization problem

OSSolverService -osil ../../data/osilFiles/rosenbrockmod.osil
-solver ipopt

Solving a mixed-integer nonlinear optimization problem

OSSolverService -osil ../../data/osilFiles/bonminEx1.osil
-solver bonmin

29

Solving a Problem

It is possible to build the OSSolverService to work with other
solvers but they are not included due to licensing issues.

I Glpk

I Cplex

I LINDO

30

Solving a Problem

Continually writing out command line options a pain. Use a
configuration file instead. Do something like:

OSSolverService -config ../../data/configFiles/testLocal.config

where the file testLocal.config is

-osil ../../data/osilFiles/parincLinear.osil
-solver cbc

Note: the only option that is required is the location of an
instance file

31

Solving a Problem

Finally – you can call solvers remotely.

Specify a service location of the remote solver service.

OSSolverService -osil ../data/osilFiles/parincLinear.osil
-serviceLocation

http://gsbkip.chicagogsb.edu/os/OSSolverService.jws

32

Solving a Problem

To get help

OSSolverService -h

–OR–

OSSolverService --help

33

Using a Modeling Language

Where are we?

Well, we can solve an optimization problem, assuming we have it
in OSiL, nl, gams, or MPS format. Where does the OSiL, nl,
gams, or MPS file come from? Ugh!

There are two general ways to create the optimization instance.

I Use a modeling language!!! The AMPL, GAMS, and MPL
solvers work with COIN-OR solvers. You can also use
FlopC++ (but it requires a compiler and knowledge of C++).

I Build the instance using COIN-OR libraries.

34

USING OSAmplClient

In the CD distribution again locate the bin directory. The bin
directory contains an application OSAmplClient.

Inside of AMPL you “declare” OSAmplClient to be solver. It takes
care of the rest.

There is not a size limitation on the solvers, however the AMPL
you download off is constrained in size. I think the “free” version is
about 300 constraints and variables.

35

USING OSAmplClient

Use the following sequence to solve a problem from AMPL. We
assume that the AMPL model is hs71.mod.

Execute ampl.exe at the command line. Once inside ampl.exe do
the following:

model hs71.mod;
tell AMPL that the solver is OSAmplClient
option solver OSAmplClient;

now tell OSAmplClient to use Ipopt
option OSAmplClient_options "solver ipopt";

now solve the problem
solve;

36

USING OSAmplClient

AMPL result of solve:

37

USING OSAmplClient

You can also call a remote (i.e. over the network) solver from
inside AMPL.

In order to call a remote solver service, after the command

option OSAmplClient_options "solver ipopt";

set the solver service option to the address of the remote solver
service.

option ipopt_options
"service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws";

38

USING GAMS

You can also use GAMS (General Algebraic Modeling System).
Used in a fashion very similar to AMPL.

However, you need to download the COIN-OR project GAMSlinks.

In the GAMSlinks folder select the platform you have.

Copy gmsos .zip into the GAMS 22.8 directory.

Execute the command gamsinst.

39

USING GAMS

Inside the GAMS 22.8 directory execute the following command.

gams rbrockmod nlp=os

The option optfile=1 tells GAMS to read the file os.opt for
additional options. The os.opt file is

writeosil osil.xml
writeosrl osrl.xml
solver ipopt

40

USING GAMS

To solve a problem remotely in GAMS add the service option to
the option file:

writeosil osil.xml
writeosrl osrl.xml
service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
solver ipopt

41

USING MPL

You can use MPL in conjunction with CoinMP to call COIN-OR
solvers.

See: http://www.maximalsoftware.com/academic/

42

http://www.maximalsoftware.com/academic/

Writing Applications

The CoinAll distribution provides libraries of COIN-OR projects
that can be used to build applications.

You Can:

I Write code to call solvers as part of a larger application

I Use the APIs (application program interface) to build models

I Use the APIs to build customized solution procedures (e.g.
cutting planes, column generation, etc.)

43

Writing Applications

The example problems are in the CoinAllExamples or
MSVisualStudioCoinAllExamples.

addCuts– illustrates how to add cuts to a branch-and-cut
algorithm

CppAD – illustrates how to use the CppAD project – Brad
Bell

instanceGenerator – illustrates how to use the libraries to
generate a nonlinear programming problem

osTestCode — illustrates how to use the libraries to generate
a linear program and call a solver

template – an empty project (set up to link to all the libs)
that you can use for your own applications

44

Writing Applications

Windows – Visual Studio project files configured to link with the
libraries in the lib directory and include the header files in the
include directory.

Linux and Mac OS X – Makefiles configured to link with the
libraries in the lib directory and include the header files in the
include directory.

First, we just call a solver from an application to see if everything
is working. We illustrate with the osTestCode example in
CoinAllExamples.

45

Writing Applications

First, we just call a solver from an application to see if everything
is working. We illustrate with the osTestCode example in
CoinAllExamples.

The osTestCode does the following:

I Builds an in-memory instance of the linear programming
example we solved earlier.

I Creates a Clp solver object (more on this later)

I Optimizes the problem with the Clp solver object

46

Writing Applications

Test with Windows. Locate the solution file in
MSVisualStudioCoinAllExamples.

47

Writing Applications

Set the osTestCode project as the default project.

48

Writing Applications

Rebuild the osTestCode project.

49

Writing Applications

Run the osTestCode project.

50

Writing Applications

The result of running the osTestCode project.

51

Writing Applications

Test in Linux and Mac OS X

Step 1: Connect to the directory CoinAllExamples/osTestCode

Step 2: type Make

Step 3: type ./osTestCode

52

Writing Applications – Call a Solver

The BIG PICTURE: most optimization solvers have an API
(application program interface).

You can use the solver API to create the solver-specific
representation of an optimization instance.

The OS library wraps around the solver-specific APIs, takes a
generic non-solver-specific model instance, and converts it into the
solver-specific representation.

53

Writing Applications – Call a Solver

An illustration!

54

Writing Applications – Call the Clp Solver

55

Writing Applications – Call a Solver

Basic Idea for calling a solver: the OS library contains solver
classes.

I Step 1: Create a specific solver object

I Step 2: Feed the solver object a generic solver-independent
model instance

I Step 3: Build the solver-specific model instance (customized
for each solver API (Application Program interface))

I Step 4: Solve the problem

56

Call a Solver (with Code)

Step 1: Create a Clp solver object

CoinSolver *solver = new CoinSolver();
solver->sSolverName ="clp";

Step 2: Feed the solver object a generic solver-indepenent model
instance

solver->osinstance = osinstance;

Step 3: Build the Clp-specific model instance

solver->buildSolverInstance();

Step 4: Solve the problem using Clp

solver->solve();

57

Writing Applications – Call a Solver

Now change to Ipopt solver.

Change:

CoinSolver *solver = new CoinSolver();
solver->sSolverName ="clp";

To:

IpoptSolver *solver = new IpoptSolver();
//solver->sSolverName ="clp";

58

Writing Applications – Call a Solver

The following solver classes are available.

I OSBonMinSolver

I OSCoinSolver (based on OSI interface)

I Clp

I Cbc

I Cplex (not included with CD build)

I DyLP

I Glpk (not included with CD build)

I SYMPHONY

I OSIpoptSolver

I OSLindoSolver (not included with CD build)

59

Writing Applications – Build an Instance

You can either: 1) read an instance from a file or string; or 2)
create the instance in-memory.

60

Writing Applications – Build an Instance

The OSInstance class provides an API for connecting a model
instance with a solver.

I set() and add() methods for creating models

I get() methods for getting information about a problem

I calculate() methods for finding gradient and Hessians using
algorithmic differentiation

61

Writing Applications – Build an Instance

Let’s create a problem from scratch.

The COIN-OR software is object oriented.

Key Idea 1: Create an OSInstance object.

OSInstance *osinstance = new OSInstance();

Put some variables in

osinstance->setVariableNumber(2);

osinstance->addVariable(0, "x0", 0, OSDBL_MAX, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, OSDBL_MAX, ’C’, OSNAN, "");

62

Writing Applications – Build an Instance

Don’t forget the constraints!

osinstance->setConstraintNumber(4);

osinstance->addConstraint(0, "row0", -OSDBL_MAX, 630, 0);
osinstance->addConstraint(1, "row1", -OSDBL_MAX, 600, 0);
osinstance->addConstraint(2, "row2", -OSDBL_MAX, 708, 0);
osinstance->addConstraint(3, "row3", -OSDBL_MAX, 135, 0);

In practice, you would generate the constraints inside a loop(s)
rather than enumerating them one-by-one.

63

Writing Applications – Build an Instance

There are similar constructs for:

I the objective function

I constraints with all linear terms

I quadratic constraints

I constraints with general nonlinear terms

64

Writing Applications – Build an Instance

Exercise: changing a constraint upper bound.

It is possible to access the OSInstance object directly.

Change the first constraint’s upper bound from 708 to 500.

osinstance->instanceData->constraints->con[0]->ub = 500;

See examples/osTestCode for the details of this example.

See examples/instanceGenerator for an example of building a
nonlinear model.

65

Writing Applications – Build an Instance

Deja vu all over again – where we are:

66

Writing Applications – Build an Instance

Nonlinear solvers – some nonlinear solvers, e.g. Bonmin or Ipopt,
often want function and derivative evaluations rather than an
explicit formulation.

The OS library has calculate() methods for function and
derivative information.

For example, the Ipopt API has a method eval jac g(...) that
requires the Jacobian of the constraint matrix. Just have this
method call

osinstance->calculateAllConstraintFunctionGradients(...)

67

Writing Applications – Build an Instance

Some nonlinear solvers, e.g. LINDO, want a problem in an
expression list format.

Not a problem!

The OS library has methods that will return the problem as postfix
or prefix expression lists.

68

Writing Applications – Add Cutting Planes

The example for this is addCuts. It illustrates using the Cgl
(Constraint generation library) project.

The example problem illustrates:

Step 1: Read a problem and create an internal generic instance.

Step 2: Create a solver object.

Step 3: Solve the LP relaxation.

Step 4: Add cut generators.

Step 5: Go into branch-and-bound

69

Writing Applications – Add Cutting Planes

Here we go with code:

Create a Clp solver object and give it the instance

CoinSolver *solver = NULL;
solver = new CoinSolver();
solver->sSolverName ="clp";
solver->osinstance = osinstance;

Build the solver-specific instance and solve.

solver->buildSolverInstance();
solver->osiSolver->initialSolve();

70

Writing Applications – Add Cutting Planes

Create the cut generators and a Cbc model

CglKnapsackCover cover;
CglSimpleRounding round;
CglGomory gomory;
CbcModel *model = new CbcModel(*solver->osiSolver);

add the cutgenerators

model->addCutGenerator(&gomory, 1, "Gomory");
model->addCutGenerator(&cover, 1, "Cover");
model->addCutGenerator(&round, 1, "Round");

solve

model->branchAndBound();

71

Getting Help

Try https://projects.coin-or.org/OS

See the 88 page User’s Manual

http://www.coin-or.org/OS/doc/osUsersManual 1.1.pdf

72

h
h

	The CoinBinary/CoinAll Project and Workshop CD
	What Can You Do With CoinAll?
	CoinAll Projects Walk Through
	Solving Optimization Problems
	Use a Modeling Language

	Writing Applications Using COIN-OR
	Writing Applications -- Call a Solver
	Writing Applications -- Build an Instance
	Writing Applications -- Add Cutting Planes

