Prev Next runge45_2.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Runge45: Example and Test
Define @(@ X : \B{R} \times \B{R} \rightarrow \B{R}^n @)@ by @[@ X_j (b, t) = b \left( \sum_{k=0}^j t^k / k ! \right) @]@ for @(@ j = 0 , \ldots , n-1 @)@. It follows that @[@ \begin{array}{rcl} X_j (b, 0) & = & b \\ \partial_t X_j (b, t) & = & b \left( \sum_{k=0}^{j-1} t^k / k ! \right) \\ \partial_t X_j (b, t) & = & \left\{ \begin{array}{ll} 0 & {\rm if} \; j = 0 \\ X_{j-1} (b, t) & {\rm otherwise} \end{array} \right. \end{array} @]@ For a fixed @(@ t_f @)@, we can use Runge45 to define @(@ f : \B{R} \rightarrow \B{R}^n @)@ as an approximation for @(@ f(b) = X(b, t_f ) @)@. We can then compute @(@ f^{(1)} (b) @)@ which is an approximation for @[@ \partial_b X(b, t_f ) = \sum_{k=0}^j t_f^k / k ! @]@

# include <cstddef>              // for size_t
# include <limits>               // for machine epsilon
# include <cppad/cppad.hpp>      // for all of CppAD

namespace {

     template <class Scalar>
     class Fun {
     public:
          // constructor
          Fun(void)
          { }

          // set return value to X'(t)
          void Ode(
               const Scalar                    &t,
               const CPPAD_TESTVECTOR(Scalar) &x,
               CPPAD_TESTVECTOR(Scalar)       &f)
          {     size_t n  = x.size();
               f[0]      = 0.;
               for(size_t k = 1; k < n; k++)
                    f[k] = x[k-1];
          }
     };
}

bool runge_45_2(void)
{     typedef CppAD::AD<double> Scalar;
     using CppAD::NearEqual;

     bool ok = true;     // initial return value
     size_t j;           // temporary indices

     size_t     n = 5;   // number components in X(t) and order of method
     size_t     M = 2;   // number of Runge45 steps in [ti, tf]
     Scalar ad_ti = 0.;  // initial time
     Scalar ad_tf = 2.;  // final time

     // value of independent variable at which to record operations
     CPPAD_TESTVECTOR(Scalar) ad_b(1);
     ad_b[0] = 1.;

     // declare b to be the independent variable
     Independent(ad_b);

     // object to evaluate ODE
     Fun<Scalar> ad_F;

     // xi = X(0)
     CPPAD_TESTVECTOR(Scalar) ad_xi(n);
     for(j = 0; j < n; j++)
          ad_xi[j] = ad_b[0];

     // compute Runge45 approximation for X(tf)
     CPPAD_TESTVECTOR(Scalar) ad_xf(n), ad_e(n);
     ad_xf = CppAD::Runge45(ad_F, M, ad_ti, ad_tf, ad_xi, ad_e);

     // stop recording and use it to create f : b -> xf
     CppAD::ADFun<double> f(ad_b, ad_xf);

     // evaluate f(b)
     CPPAD_TESTVECTOR(double)  b(1);
     CPPAD_TESTVECTOR(double) xf(n);
     b[0] = 1.;
     xf   = f.Forward(0, b);

     // check that f(b) = X(b, tf)
     double tf    = Value(ad_tf);
     double term  = 1;
     double sum   = 0;
     double eps   = 10. * CppAD::numeric_limits<double>::epsilon();
     for(j = 0; j < n; j++)
     {     sum += term;
          ok &= NearEqual(xf[j], b[0] * sum, eps, eps);
          term *= tf;
          term /= double(j+1);
     }

     // evalute f'(b)
     CPPAD_TESTVECTOR(double) d_xf(n);
     d_xf = f.Jacobian(b);

     // check that f'(b) = partial of X(b, tf) w.r.t b
     term  = 1;
     sum   = 0;
     for(j = 0; j < n; j++)
     {     sum += term;
          ok &= NearEqual(d_xf[j], sum, eps, eps);
          term *= tf;
          term /= double(j+1);
     }

     return ok;
}

Input File: example/general/runge45_2.cpp