Prev Next double_mat_mul.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
CppAD Speed: Matrix Multiplication (Double Version)

Specifications
See link_mat_mul .

Implementation
# include <cppad/cppad.hpp>
# include <cppad/speed/mat_sum_sq.hpp>
# include <cppad/speed/uniform_01.hpp>

// Note that CppAD uses global_option["memory"] at the main program level
# include <map>
extern std::map<std::string, bool> global_option;

bool link_mat_mul(
     size_t                           size     ,
     size_t                           repeat   ,
     CppAD::vector<double>&           x        ,
     CppAD::vector<double>&           z        ,
     CppAD::vector<double>&           dz
)
{
     if(global_option["onetape"]||global_option["atomic"]||global_option["optimize"])
          return false;
     // -----------------------------------------------------
     size_t n = size * size; // number of independent variables
     CppAD::vector<double> y(n);

     while(repeat--)
     {     // get the next matrix
          CppAD::uniform_01(n, x);

          // do computation
          mat_sum_sq(size, x, y, z);

     }
     return true;
}

Input File: speed/double/mat_mul.cpp