
Using CoinAll with Microsoft Visual Studio

Horand Gassmann, Jun Ma, and Kipp Martin

November 16, 2009

1 Overview

The COIN-OR CoinAll project is a meta-project that consists of most of the COIN-OR projects
that are focused on optimization. This document describes a binary distribution that is specifically
designed for Microsoft Windows users who want to write applications using Visual Studio projects
that link to COIN-OR CoinAll libraries but are not interested in actually building from source
the individual projects that constitute CoinAll. This download is plug-and-play, complete with
pre-configured Visual Studio project files – it is not necessary to build any COIN-OR projects
from source code. This document contains the following information. In Section 2 we detail the
various components contained in this distribution. Section 3 we describe the Visual Studio project
files. Finally, in Section 4 we detail nine examples (for which there are Visual Studio project files)
that illustrate how to use the COIN-OR libraries provided in this distribution. Libraries from
the following COIN-OR projects – the projects that constitute CoinAll – are contained in this
distribution.

Bcp (https://projects.coin-or.org/Bcp)

Bonmin (https://projects.coin-or.org/Bonmin)

Cbc (https://projects.coin-or.org/Cbc)

CHiPPS (https://projects.coin-or.org/CHiPPS/)

Cgl (https://projects.coin-or.org/Cgl)

Clp (https://projects.coin-or.org/Clp)

CoinMP (https://projects.coin-or.org/CoinMP)

CoinUtils (https://projects.coin-or.org/CoinUtils)

Couenne (https://projects.coin-or.org/Couenne)

CppAD (https://projects.coin-or.org/CppAD)

DyLP (https://projects.coin-or.org/DyLP)

FlopC++ (https://projects.coin-or.org/FlopC++)

Ipopt (https://projects.coin-or.org/Ipopt)

Optimization Services (https://projects.coin-or.org/OS)

1

Osi (https://projects.coin-or.org/Osi)

Smi (https://projects.coin-or.org/Smi)

SYMPHONY (https://projects.coin-or.org/SYMPHONY)

Vol (https://projects.coin-or.org/Vol)

The reader may also be interested in a companion document, http://www.coin-or.org/
CoinEasy/doc/coinEasyServer.pdf that describes how to 1) access the solvers in the CoinAll
project either locally or on a remote COIN-OR server using GAMS or AMPL, and 2) how to access
these solvers from a command line executable.

2 The Binary Distribution

When properly installed, the material in this distribution is arranged into a number of folders in
hierarchical fashion. The top level of this hierarchy consists of the following folders.

• bin – this directory contains solver command-line executables. See http://www.coin-or.
org/CoinEasy/doc/coinEasyServer.pdf for more detail.

• data – problem instances in OSiL, nl, and MPS format,

• doc – the directory containing this document,

• examples – this directory contains source code illustrating how to build applications that
use COIN-OR software,

• include – this directory contains the necessary header files if a user wishes to build appli-
cations linking to the COIN-OR libraries supplied in the lib directory,

• lib – this directory contains the solver libraries, the Visual Studio project files are linked to
these libraries,

• MSVisualStudioOSExamples – this directory contains Visual Studio project files for
each of the examples given in Section 4.

• share – this directory contains author and license information for each of the COIN-OR
projects that are part of this binary download

3 Using Visual Studio to Build Applications

In this section we describe the directory MSVisualStudioOSExamples. This directory con-
tains nine Visual Studio project files, each in a separate folder. Each of these project files is
linked to all of the COIN-OR libraries in the lib directory and the necessary header files in the
include directory. The Visual Studio solution file osExamplesSolution.sln contains each of
these projects. Building these examples (for instance after making modifications to the code)
is therefore very easy: Find the solution file in the Windows Explorer and double-click on it.
This opens up Visual Studio 2008. (If you do not have Visual Studio 2008 available, see the
OS user’s manual (http://www.coin-or.org/OS/doc/osUsersManual_2.0.pdf) for information

2

on how to download a free copy of Visual Studio.) Once inside Visual Studio, push F7 or se-
lect Build Solution from the Build menu. To keep things simple, and in order not to have to
supply multiple versions of all the libraries, the solution file contains only a single configuration,
Release. When the examples are successfully built, the executables will be stored into the folders
that contain the project files. For example, OSSolverDemoTest.exe will be found in the folder
MSVisualStudioExamples\OSSolverDemoTest.

The examples are described in more detail in Section 4. Eight of the examples illustrate various
aspects of CoinAll projects. The ninth project is a plug-and-play project. The user can use this
project to build his or her own application based on the pre-compiled libraries. Obviously the code
in the other projects can be used as a guide to using the Optimization Services (OS) API.

Before proceeding we comment on the naming convention. The projects files listed begin with
the letters OS – this stands for Optimization Services which is one of the projects in the CoinAll
project. The OS is a framework project that integrates many of the solvers in CoinAll and the
examples in Section are actually taken from the OS project.

4 Example Projects

We provide eight examples that demonstrate how to use various aspects of the COIN-OR software.
Many users will find the OSSolverDemo to be the most useful in that this describes how to write
code to hook with the various CoinAll solvers. See Section 4.5. There is also an empty example
Template for users to put in their own code.

4.1 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Meth-
ods

In the OS\examples\algorithmicDiff folder is the test code OSAlgorithmicDiffTest.cpp. This
code illustrates the key methods in the OSInstance API that are used for algorithmic differentiation.

4.2 Instance Generator: Using the OSInstance API to Generate Instances

This example is found in the instanceGenerator folder in the examples folder. This example
illustrates how to build a complete in-memory model instance using the OSInstance API. See the
code OSInstanceGenerator.cpp for the complete example. Here we provide a few highlights to
illustrate the power of the API.

The first step is to create an OSInstance object.

OSInstance *osinstance;
osinstance = new OSInstance();

The instance has two variables, x0 and x1. Variable x0 is a continuous variable with lower
bound of −100 and upper bound of 100. Variable x1 is a binary variable. First declare the instance
to have two variables.

osinstance->setVariableNumber(2);

Next, add each variable. There is an addVariable method with the signature

addVariable(int index, string name, double lowerBound, double upperBound, char type);

Then the calls for these two variables are

3

osinstance->addVariable(0, "x0", -100, 100, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, 1, ’B’, OSNAN, "");

There is also a method setVariables for adding more than one variable simultaneously. The
objective function(s) and constraints are added through similar calls.

Nonlinear terms are also added in a straightforward if slightly cumbersome manner. The follow-
ing code illustrates how to add a nonlinear term x0 ∗ x1 in the <nonlinearExpressions> section
of OSiL. This term is part of constraint 1 and is the second of six constraints contained in the
instance.

First we set up storage for all six expressions, as follows.

osinstance->instanceData->nonlinearExpressions->numberOfNonlinearExpressions = 6;
osinstance->instanceData->nonlinearExpressions->nl = new Nl*[6];

The next code snippet shows how to initial the second of the six expressions.

osinstance->instanceData->nonlinearExpressions->nl[1] = new Nl();
osinstance->instanceData->nonlinearExpressions->nl[1]->idx = 1;
osinstance->instanceData->nonlinearExpressions->nl[1]->osExpressionTree =
new OSExpressionTree();

Next we build the expression in postfix notation, that is, in the form (x0, x1, ∗).

// create a variable nl node for x0 an dput into temporary storage
nlNodeVariablePoint = new OSnLNodeVariable();
nlNodeVariablePoint->idx=0;
nlNodeVec.push_back(nlNodeVariablePoint);
// create the nl node for x1
nlNodeVariablePoint = new OSnLNodeVariable();
nlNodeVariablePoint->idx=1;
nlNodeVec.push_back(nlNodeVariablePoint);
// create the nl node for *
nlNodePoint = new OSnLNodeTimes();
nlNodeVec.push_back(nlNodePoint);
// now move the temporaray storage into the expression tree
osinstance->instanceData->nonlinearExpressions->nl[1]->osExpressionTree->m_treeRoot =
nlNodeVec[0]->createExpressionTreeFromPostfix(nlNodeVec);

4.3 branchCutPrice: Using Bcp

This example illustrates the use of the COIN-OR Bcp (Branch-cut-and-price) project. This project
presents the user with the ability to have control over each node in the branch and process. This
makes it possible to add user-defined cuts and/or user-defined variables. At each node in the tree, a
call is made to the method process lp result(). In the example problem we illustrate 1) adding
COIN-OR Cgl cuts, 2) a user-defined cut, and 3) a user-defined variable.

4.4 OSModDemo: Modifying an In-Memory OSInstance Object

The osModDemo folder holds the file OSModDemo.cpp. This is similar to the instanceGenerator
example. In this case, a simple linear program is generated. However, this example also illustrates
how to modify an in-memory OSInstance object. In particular, we illustrate how to modify an
objective function coeffient. Note the line of code

4

solver->osinstance->bObjectivesModified = true;

which is critical, otherwise changes made to the OSInstance object will not be fed to the solver.
This example also illustrates calling a COIN-OR solver, in this case Clp.

Important: the ability to modify a problem instance is extremely limited in Release 2.0 of OS.
A better API for problem modification will come with a later release of OS.

4.5 OSSolverDemo: Building In-Memory Solver and Option Objects

The code in the example file OSSolverDemo.cpp in the folder osSolverDemo illustrates how to
build solver interfaces and an in-memory OSOption object. In this example we illustrate building a
solver interface and corresponding OSOption object for the solvers Clp, Cbc, SYMPHONY, Ipopt,
Bonmin, and Couenne. Each solver class inherits from a virtual OSDefaultSolver class. Each
solver class has the string data members

• osil – this string conforms to the OSiL standard and holds the model instance.

• osol – this string conforms to the OSoL standard and holds an instance with the solver
options (if there are any); this string can be empty.

• osrl – this string conforms to the OSrL standard and holds the solution instance; each solver
interface produces an osrl string.

Corresponding to each string there is an in-memory object data member, namely

• osinstance – an in-memory OSInstance object containing the model instance and get() and
set() methods to access various parts of the model.

• osoption – an in-memory OSOption object; solver options can be accessed or set using get()
and set() methods.

• osresult – an in-memory OSResult object; various parts of the model solution are accessible
through get() and set() methods.

For each solver we detail five steps:

Step 1: Read a model instance from a file and create the corresponding OSInstance object. For four
of the solvers we read a file with the model instance in OSiL format. For the Clp example we
read an MPS file and convert to OSiL. For the Couenne example we read an AMPL nl file
and convert to OSiL.

Step 2: Create an OSOption object and set options appropriate for the given solver. This is done by
defining

OSOption* osoption = NULL;
osoption = new OSOption();

A key method in the OSOption interface is setAnotherSolverOption(). This method takes
the following arguments in order.

std::string name – the option name;

5

std::string value – the value of the option;

std::string solver – the name of the solver to which the option applies;

std::string category – options may fall into categories. For example, consider the
Couenne solver. This solver is also linked to the Ipopt and Bonmin solvers and it is
possible to set options for these solvers through the Couenne API. In order to set an
Ipopt option you would set the solver argument to "couenne" and set the category
argument to "ipopt".

std::string type – many solvers require knowledge of the data type, so you can set the
type to double, integer, boolean or string, depending on the solver requirements.
Special types defined by the solver, such as the type numeric used by the Ipopt solver,
can also be accommodated. It is the user’s responsibility to verify the type expected by
the solver.

std::string description – this argument is used to provide any detail or additional
information about the option. An empty string ("") can be passed if such additional
information is not needed.

For excellent documentation that details solver options for Bonmin, Cbc, and Ipopt we rec-
ommend

http://www.coin-or.org/GAMSlinks/gamscoin.pdf

Step 3: Create the solver object. In the OS project there is a virtual solver that is declared by

DefaultSolver *solver = NULL;

The Cbc, Clp and SYMPHONY solvers as well as other solvers of linear and integer linear
programs are all invoked by creating a CoinSolver(). For example, the following is used to
invoke Cbc.

solver = new CoinSolver();
solver->sSolverName ="cbc";

Other solvers, particularly the nonlinear solvers Ipopt, Bonmin and Couenne are implemented
separately. So to declare, for example, an Ipopt solver, one should write

solver = new IpoptSolver();

The syntax is the same regardless of solver.

Step 4: Import the OSOption and OSInstance into the solver and solve the model. This process is
identical regardless of which solver is used. The syntax is:

solver->osinstance = osinstance;
solver->osoption = osoption;
solver->solve();

6

Step 5: After optimizing the instance, each of the OS solver interfaces uses the underlying solver
API to get the solution result and write the result to a string named osrl which is a string
representing the solution instance in the OSrL XML format. This string is accessed by

solver->osrl;

In the example code OSSolverDemo.cpp we have written a method,

void getOSResult(std::string osrl);

that takes the osrl string and creates an OSResult object. We then illustrate several of the
OSResult API methods

double getOptimalObjValue(int objIdx, int solIdx);
std::vector<IndexValuePair*> getOptimalPrimalVariableValues(int solIdx);

to get and write out the optimal objective function value, and optimal primal values. See
also Section 4.6.

We now highlight some of the features illustrated by each of the solver examples.

• Clp – In this example we read in a problem instance in MPS format. The class OSmps2osil
has a method mps2osil that is used to convert the MPS instance contained in a file into an
in-memory OSInstance object. This example also illustrates how to set options using the Osi
interface. In particular we turn on intermediate output which is turned off by default in the
Coin Solver Interface.

• Cbc – In this example we read a problem instance that is in OSiL format and create an
in-memory OSInstance object. We then create an OSOption object. This is quite trivial. A
plain-text XML file conforming to the OSiL schema is read into a string osil which is then
converted into the in-memory OSInstance object by

OSiLReader *osilreader = NULL;
OSInstance *osinstance = NULL;
osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(osil);

We set the linear programming algorithm to be the primal simplex method and then set the
option on the pivot selection to be stepest edge. Finally, we set the print level to be 10.

osoption->setAnotherSolverOption("primalS","","cbc","","string","");
osoption->setAnotherSolverOption("primalpivot","steepest","cbc","","string","");
osoption->setAnotherSolverOption("log","10","cbc","","integer","");

• SYMPHONY – In this example we also read a problem instance that is in OSiL format and
create an in-memory OSInstance object. We then create an OSOption object and illustrate
setting the verbosity option.

7

• Ipopt – In this example we also read a problem instance that is in OSiL format. However,
in this case we do not create an OSInstance object. We read the OSiL file into a string osil.
We then feed the osil string directly into the Ipopt solver by

solver->osil = osil;

The user always has the option of providing the OSiL to the solver as either a string or
in-memory object.

Next we create an OSOption object. For Ipopt, we illustrate setting the maximum iteration
limit and also provide the name of the output file. In addition, the OSOption object can hold
initial solution values. We illustrate how to initialize all of the variable to 1.0.

numVar = 2; //rosenbrock mod has two variables
xinitial = new double[numVar];
for(i = 0; i < numVar; i++){

xinitial[i] = 1.0;
}
osoption->setInitVarValuesDense(numVar, xinitial);

• Bonmin – In this example we read a problem instance that is in OSiL format and create an
in-memory OSInstance object just as was done in the Cbc and SYMPHONY examples. We
then create an OSOption object. In setting the OSOption object we intentionally set an option
that will cause the Bonmin solver to terminate early. In particular we set the node limit to
zero.

osoption->setAnotherSolverOption("node_limit","0","bonmin","","integer","");

This results in early termination of the algorithm. The OSResult class API has a method

std::string getSolutionStatusDescription(int solIdx);

For this example, invoking

osresult->getSolutionStatusDescription(0)

gives the result:

LIMIT_EXCEEDED[BONMIN]: A resource limit was exceeded, we provide the current solution.

• Couenne – In this example we read in a problem instance in AMPL nl format. The class
OSnl2osil has a method nl2osil that is used to convert the nl instance contained in a file
into an in-memory OSInstance object. This is done as follows:

// convert to the OS native format
OSnl2osil *nl2osil = NULL;
nl2osil = new OSnl2osil(nlFileName);
// create the first in-memory OSInstance
nl2osil->createOSInstance() ;
osinstance = nl2osil->osinstance;

8

This part of the example also illustrates setting options in one solver from another. Couenne
uses Bonmin which uses Ipopt. So for example,

osoption->setAnotherSolverOption("max_iter","100","couenne","ipopt","integer","");

identifies the solver as Couenne, but the category value of "ipopt" tells the solver interface to set
the iteration limit on the Ipopt algorithm that is solving the continuous relaxation of the problem.
Likewise, the setting

osoption->setAnotherSolverOption("num_resolve_at_node","3","couenne","bonmin","integer","");

identifies the solver as Couenne, but the category value of "bonmin" tells the solver interface to tell
the Bonmin solver to try three starting points at each node.

4.6 OSResultDemo: Building In-Memory Result Object to Display Solver Re-
sult

The OS protocol for representing an optimization result is OSrL. Like the OSiL and OSoL protocol,
this protocol has an associated in-memory OSResult class with corresponding API. The use of the
API is demonstrated in the code OSResultDemo.cpp in the folder OS\examples\OSResultDemo.
In the code we solve a linear program with the Clp solver. The OS solver interface builds an OSrL
string that we read into the OSrLReader class and create and OSResult object. We then use the
OSResult API to get the optimal primal and dual solution. We also use the API to get the reduced
cost values.

4.7 OSCglCuts: Using the OSInstance API to Generate Cutting Planes

In this example, we show how to add cuts to tighten an LP using COIN-OR Cgl (Cut Generation
Library).

4.8 OSRemoteTest: Calling a Remote Server

This example illustrates the API for the six service methods that implement the remote solver
service. These methods are described in the user’s manual (see http://www.coin-or.org/OS/
doc/osUsersManual_2.0.pdf). The file osRemoteTest.cpp in folder osRemoteTest first builds
a small linear example, solves it remotely in synchronous mode and displays the solution. The
asynchronous mode is also tested by submitting the problem to a remote solver, checking the
status and either retrieving the answer or killing the process if it has not yet finished.

4.9 Template

The code template.cpp is in the template directory. This is linked to all of the COIN-OR
libraries in lib but is an empty example. The user can write his or her own code here and build an
application based on the COIN-OR projects.

9

