
Using the COIN-OR Server

Your CoinEasy Team

November 16, 2009

1

1 Overview

This document is part of the CoinEasy project. See projects.coin-or.org/CoinEasy. In this
document we describe the options available to users of COIN-OR who are interested in solving opti-
mization problems but do not wish to compile source code in order to build the COIN-OR projects.
In particular, we show how the user can send optimization problems to a COIN-OR server and get
the solution result back. The COIN-OR server, webdss.ise.ufl.edu, is 2x Intel(R) Xeon(TM)
CPU 3.06GHz 512MiB L2 1024MiB L3, 2GiB DRAM, 4x73GiB scsi disk 2xGigE machine. This
server allows the user to directly access the following COIN-OR optimization solvers:

• Bonmin – a solver for mixed-integer nonlinear optimization

• Cbc – a solver for mixed-integer linear programs

• Clp – a linear programming solver

• Couenne – a solver for mixed-integer nonlinear optimization problems and is capable of
global optiomization

• DyLP – a linear programming solver

• Ipopt – an interior point nonlinear optimization solver

• SYMPHONY – mixed integer linear solver that can be executed in either parallel (dis-
tributed or shared memory) or sequential modes

• Vol – a linear programming solver

All of these solvers on the COIN-OR server may be accessed through either the GAMS or
AMPL modeling languages. In Section 2.1 we describe how to use the solvers using the GAMS
modeling language. In Section 2.2 we describe how to call the solvers using the AMPL modeling
language. In Section 3 we describe how to call the solvers using a command line executable pro-
gram OSSolverService.exe (or OSSolverService for Linux/Mac OS X users – in the rest of the
document we refer to this executable using a .exe extension). The OSSolverService.exe can be
used independently of a modeling language. It can send optimization instances to the solvers in
MPS, OSiL (a new XML based representation standard), AMPL nl, and GAMS dat formats. A
nice feature of the OSSolverService.exe is that it can be used in asynchronous mode for large
problems. This is also described in Section 3. We show how to obtain a job id from the server, send
a job to the server, check the server to see if the job is done, retrieve the job if it is done, and kill
the job if it is taking too long. In Section 4 we suggest an approach for users who wish to actually
write code. Finally, we describe how to download the necessary client software in Section 5. This
software consists of executable programs for various platforms, the user is not required to compile
code.

2 Calling the COIN-OR Server using a Modeling Language

2.1 GAMS

In this section we explain how to use the GAMS modeling language to call the COIN-OR solver
server. This section is based on the assumption that the user has installed either:

2

1. GAMS version 22.9, 23.0, 23.1, or 23.2. In the the distribution described in Section 5 there
is a file gmsos .zip. Copy this file into your GAMS folder. Then run gamsinst and select
OS as the default solver whenever it is listed as a solver.

2. GAMS version 23.3. No additional software is required. However, with this version you
cannot select OS as the default solver. Rather, when building the GAMS model, place the
following option command somewhere in the model before the Solve statement (however,
with 23.3 you could install gmsos .zip if desired and then go through the install process and
select OS as the default solver):

Option ProblemType = CoinOS;

where ProblemType can be

LP, RMIP, MIP, DNLP, DNLP, NLP, RMINLP, QCP, RMIQCP, MIQCP

As an alternative to putting the solver option in the GAMS model, it can be given at the
command line. When running the model and solving model, write:

gams.exe ModelName ProblemType=CoinOS

You can now solve a wide variety of problems either locally or remotely using COIN-OR solvers.
In the discussion that follows we assume that folder where GAMS is installed is in the PATH
command. We first discuss using GAMS to invoke the COIN-OR solvers that are distributed with
GAMS. In this case the model generation and resulting optimization are all done on the local
machine. Then we discuss using GAMS to call the remote COIN-OR solver service.

2.1.1 Using GAMS for a Local Solver

The CoinOS (similarly OS) solver that is packaged with GAMS is really a solver interface and is
linked to the following COIN-OR solvers: Bonmin, Cbc, Clp, Couenne, Glpk, and Ipopt . Think
of CoinOS as a meta slover. The distribution described in Section 5 contains a test problem,
eastborne.gms, which is an integer linear program. To solve this problem for versions 22.9-23.2
type

gams.exe eastborne.gms

and for version 23.3 type

gams.exe eastborne.gms MIP=CoinOS

Executing the commands above will result in the model being solved on the local machine
using the COIN-OR solver Cbc. By default, for continuous linear models (LP and RMIP), CoinOS
or OS chooses Clp. For continuous nonlinear models (NLP, DNLP, RMINLP, QCP, RMIQCP),
Ipopt is the default solver. For mixed-integer linear models (MIP), Cbc is the default solver. For
mixed-integer nonlinear models (MIQCP, MINLP), Bonmin is the default solver.

It is possible to control which solver is selected by CoinOS or OS. This is done by providing an
options file to CoinOS or OS. For versions 22.9-23.2 the option fille should be named os.opt and
this file is invoked at the command line by

gams.exe eastborne.gms optfile 1

3

It is possible to define multiple GAMS options files following the specific naming conventions as set
out below:

optfile=1 corresponds to os.opt
optfile=2 corresponds to os.op2
...
optfile=99 corresponds to os.o99

For GAMS 23.3, since the solver is named CoinOS, the option file should be named coinos.opt
and the command line call is

gams.exe eastborne.gms MIP=CoinOS optfile 1

and calling multiple GAMS options files uses the convention

optfile=1 corresponds to coinos.opt
optfile=2 corresponds to coinos.op2
...
optfile=99 corresponds to coinos.o99

We now explain the valid options that can go into the options files. The first option is the solver
option.

solver (string): Specifes the solver that is used to solve an instance. Valid values are clp, cbc,
glpk, ipopt, bonmin, and couenne. If a solver name is specified that is not recognized, the default
solver for the problem type will be used. For example, if the file coinos.opt contains a single line

solver coinbonmin

then the Bonmin solver will be used to solve the problem. Following are some of the other options
that can be specified in a GAMS option file when using either OS or CoinOS.

writeosil (string): If this option is used GAMS will write the optimization instance to file in
OSiL (Optimization Services instance Language) XML format.

writeosrl (string): If this option is used GAMS will write the result of the optimization to file
in OSrL (Optimization Services result Language) XML format.

The option just described are options for the GAMS modeling language. It is also possible to
pass options directly to the COIN-OR solvers used by either CoinOS or OS. This is done by passing
the name of an option file that conforms to the OSoL (Optimization Services option Language)
XML standard. See http://projects.coin-or.org/OS for information on Optimization Services.
The option

readosol (string): Specifies the name of an option fille in OSoL format that is given to the solver.

The file solveroptions.osol is contained in the distribution described in Section 5. This file
contains four solver options; two for Cbc, one for Ipopt, and one for SYMPHONY (which is available
for remote server calls, but not locally). You can have any number of options. Note the format for
specifying an option:

<solverOption name="maxN" solver="cbc" value="5" />

4

The attribute name specifies that the option name is maxN which is the maximum number of nodes
allowed in the branch-and-bound tree, the solver attribute specifies the name of the solver that
the option should be applied to, and the value attribute specifies the value of the option. As a
second example, consider the specification

<solverOption name="max_iter" solver="ipopt" type="integer" value="2000"/>

In this example we are specifying an iteration limit for Ipopt. Note the additional attribute type
that has value integer. The Ipopt solver requires specifying the data type (string, integer, or
numeric) for its options. For a list of options that solvers take, inside the GAMS directory see the
file

docs/solvers/coin.pdf

An up-to-date online version is available at http://www.coin-or.org/GAMSlinks/gamscoin.pdf.
IMPORTANT: unlike the OSAmplClient described in Section 2.2, OS and CoinOS do not parse
the solveroptions.osol file, they simply pass the file directly onto the local solver or the remote
solver service.

2.1.2 Using GAMS to Invoke the COIN-OR Solver Service

We now describe how to call the COIN-OR solver service. There are several reason why you might
wish to use this service.

• Have access to a faster machine.

• Be able to submit jobs to run in asynchronous mode – submit your job, turn off your laptop,
and check later to see if the job ran.

• Call several additional solvers (SYMPHONY and DyLP).

In order to use the COIN-OR solver service it is necessary to specify the service URL. This is
done using the service option.

service (string): Specifes the URL of the COIN-OR solver service

Use the following value for this option.

service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService

IMPORTANT: Using the solver option will have no effect on which solver the remote solver
service uses. The remote solver service uses the same defaults as the local service. For linear
models (LP and RMIP), Clp is the default solver. For continuous nonlinear models (NLP, DNLP,
RMINLP, QCP, RMIQCP), Ipopt is the default solver. For mixed-integer linear models (MIP),
Cbc is the default solver. For mixed-integer nonlinear models (MIQCP, MINLP), Bonmin is the
default solver. In order to control the solver used, it is necessary to specify the name of the solver
inside the XML tag <solverToInvoke>. The example solveroptions.osol file contains the XML
tag

<solverToInvoke>symphony</solverToInvoke>

If the coinos.opt file is

5

solver coinipopt
service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
readosol solveroptions.osol
writeosrl temp.osrl

then Ipopt is ignored as a solver option and the remote server uses the SYMPHONY solver. Valid
values for the remote solver service specified in the <solverToInvoke> tag are clp, cbc, dylp,
glpk, ipopt, bonmin, couenne, symphony, and vol.

By default, the call to the server is a synchronous call. The GAMS process will wait for the
result and then display the result. This may not be desirable when solving large optimization
models. The user may wish to submit a job, turn off his or her computer, and then check at a
later date to see if the job is complete. In order use the remote solver service in this fashion, i.e.
asynchronously it is necessary to use the service method option.

service method (string) Specifies the method to execute on a server. Valid values for this option
are solve, getJobID, send, knock, retrieve, and kill. We explain how to use each of these.

The default value of service method is solve. A solve invokes the the remote service in
synchronous mode. When using the solve you can optionally specify a set of solver options in an
OSoL file by using the readosol option. The remaining values for the service method option are
used for an asynchronous call. We illustrate them in the order in which they would most logically
be executed.

service method getJobID: When working in asynchronous mode, the server needs to uniquely
identify each job. The getJobID service method will result in the server returning a unique job id.
For example if the following coinos.opt file is used

service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
service_method getJobID

with the command

gams.exe eastborne.gms optfile=1

the user will a rather long job id returned to the screen as output. Any job id can be sent to the
server as long as it has not been used before. Assume that the job id returned is coinor12345xyz.
This job id is used to submit a job to the server with the send method.

service method send: When working in asynchronous mode, use the send service method to
submit a job. When using the send service method option an option is required and the option file
must specify a job id that has not been used before. Assume that in the coinos.opt we specify
the options:

service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
service_method send
readosol sendWithJobID.osol

The sendWithJobID.osol option file is identical to the solveroptions.osol option file except
that it has an additional XML tag:

<jobID>coinor12345xyz</jobID>

We then execute

6

gams.exe eastborne.gms optfile=1

If all goes well, the response to the above command should be: “Problem instance successfully send
to OS service.” At this point the server will schedule the job and work on it. It is possible to turn
off the user computer at this point. At some point the user will want to know if the job is finished.
This is accomplished using the knock service method.

service method knock: When working in asynchronous mode, this is used to check the status
of job. Consider the following coinos.opt file:

service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
service_method knock
readosol sendWithJobID.osol
readospl knock.ospl
writeospl knockResult.ospl

The knock service method requires two inputs. The first input is the name of an option file,
in this case sendWithJobID specified through the readosol option. In addition, a file in OSpL
(Optimization Services process Language) is required. Do not worry about the format of this file,
use the knock.opsl file provided in the binary distribution. This file name is specified using the
readospl option. If no job id is specified in OSoL file then the status of all jobs on the server
will be returned in the file specified by the writeospl option. If a job id is specified in the OSoL
file, then only information on the specified job id is returned in the file specified by the writeospl
option. In this case the file name is knockResult.ospl. We then execute

gams.exe eastborne.gms optfile=1

The file knockResult.ospl will contain the information

<job jobID="coinor12345xyz">
<state>finished</state>
<serviceURI>http://192.168.0.219:8443/os/OSSolverService.jws</serviceURI>
<submitTime>2009-11-10T02:13:11.245-06:00</submitTime>
<startTime>2009-11-10T02:13:11.245-06:00</startTime>
<endTime>2009-11-10T02:13:12.605-06:00</endTime>
<duration>1.36</duration>
</job>

Note the the job is complete as indicated in the <state> tag. It is now time to actually retrieve
the job solution. This is done with the retrieve option.

service method retrieve: When working in asynchronous mode, this is used to retrieve the job
solution. It is necessary when using knock to specify an option file and in that option file specify
a job id. Consider the following coinos.opt file:

service http://kipp.chicagobooth.edu/os/OSSolverService.jws
service_method retrieve
readosol sendWithJobID.osol
writeosrl answer.osrl

We then execute

7

gams.exe eastborne.gms optfile=1

and the result is written to the file answer.osrl.
Finally there is a kill service method which is used to kill a job that is a mistake or running

too long on the server.

service method kill: When working in asynchronous mode, this is used to terminate a job. You
should specify an OSoL file containing the JobID by using the readosol option.

2.1.3 GAMS Summary:

GAMS SUMMARY:

1. If you are using GAMS 22.9, or 23.0, or 23.1, or 23.2, put gmsos .zip in the GAMS directory,
execute gamsinst and select OS as the default solver whenever it is listed as a solver. If you
are using GAMS 23.3 place the statement Option ProblemType = CoinOS; somewhere in
the model before the Solve statement.

2. If no options are given, then the model will be solved locally and Clp will be used for linear
programs, Cbc for integer linear programs, Ipopt for continuous nonlinear programs, and
Bonmin for nonlinear integer.

3. In order to control behavior (for example, whether a local or remote solver is used) an option
file, os.opt or coinos.opt, must be used as follows

gams.exe eastborne.gms optfile=1

4. The os.opt or coinos.opt file is used to specify eight potential options:

• service (string): using the COIN-OR solver server, this is done by giving the option

service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService

• readosol (string): whether or not to send the solver an option file, this is done by
giving the option

readosol solveroptions.osol

• solver (string): if a local solve is being done, a specific solver is specified by the option

solver solver_name

Valid values are clp, cbc, glpk, ipopt, bonmin, and couenne. When the COIN-OR
solver service is being used, the only way to specify the solver to use is through the
<solverToInvoke> tag in an OSoL file. In this case the valid values for the solver are
clp, cbc, dylp, glpk, ipopt, bonmin, couenne, symphony, and vol.

• writeosrl (string): the solution result can be put into an XML file by specifying the
option

writeosrl osrl_file_name

• writeosil (string): the optimization instance can be put into an XML file by specifying
the option

8

writeosil osil_file_name

• writeospl (string): Specifies the name of an OSpL file in which the answer from the
knock or kill method is written

writeospl write_ospl_file_name

• readospl (string): Specifies the name of an OSpL file that the knock method sends to
the server

readospl read_ospl_file_name

• service method (string): Specifies the method to execute on a server. Valid values
for this option are solve, getJobID, send, knock, retrieve, and kill.

2.2 Using AMPL

This section is based on the assumption that the user has installed AMPL on his or her machine.
It is possible to call all of the COIN-OR solvers listed in Section 1 directly from the AMPL (see
http://www.ampl.com) modeling language. In this discussion we assume the user has already
obtained and installed AMPL. In the download described in Section 5 there is an executable,
OSAmplClient.exe that is linked to all of the COIN-OR solvers listed in Section 1. From the
perspective of AMPL, the OSAmplClient acts like an AMPL “solver”. The OSAmplClient.exe can
be used to solve problems either locally or remotely. In the following discussion we assume that
the AMPL executable ampl.exe, the OSAmplClient, and the test problem eastborne.mod are all
in the same directory.

2.2.1 Using OSAmplClient for a Local Solver

The problem instance eastborne.mod is an AMPL model file included in distribution described in
Section 5. To solve this problem locally by calling the OSAmplClient.exe from AMPL, first start
AMPL and then open the eastborne.mod file inside AMPL. The test model eastborne.mod is a
linear integer program.

take in sample integer linear problem
assume the problem is in the AMPL directory
model eastborne.mod;

The next step is to tell AMPL that the solver it is going to use is OSAmplClient.exe. Do this
by issuing the following command inside AMPL.

tell AMPL that the solver is OSAmplClient
option solver OSAmplClient;

It is not necessary to provide the OSAmplclient.exe solver with any options. You can just issue
the solve command in AMPL as illustrated below.

solve the problem
solve;

9

If no options are specified, by default, Clp is used for linear programs. For continuous nonlinear
models Ipopt is used. For mixed-integer linear models, Cbc is used. For mixed-integer nonlinear
models Bonmin is used. If you wish to specify a specific solver, use the solver option. For example,
since the test problem eastborne.mod is a linear integer program, Cbc is used by default. If you
want to instead use SYMPHONY, then you would pass a solver option to the OSAmplclient.exe
solver as follows.

now tell OSAmplClient to use SYMPHONY instead of Cbc
option OSAmplClient_options "solver symphony";

Valid values for the solver option are bonmin, cbc, clp, couenne, dylp, symphony, and vol.
Always specify the name of the solver entirely in lower case.

2.2.2 Using OSAmplClient to Invoke the COIN-OR Solver Server

Next, assume that you have a large problem you want solve on the remote solver. It is necessary
to specify the location of the server solver as an option to OSAmplClient. In this case, the string
of options for OSAmplClient options is:

serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService

This will send the problem to the solver server at location webdss.ise.ufl.edu. The serviceLocation
option is used to specify the location of a solver server. If, in addition, we want to use the SYM-
PHONY solver, the string of options to OSAmplClient options is:

serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
solver symphony

Finally, the user may wish to pass options to the individual solver. This is done by providing
an options file. A sample options file, solveroptions.osol is provided with this distribution.
The name of the options file is the vlaue of the optionFile option. the string of options to
OSAmplClient options is now

serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService"
solver symphony
optionFile solveroptions.osol

This solveroptions.osol file contains four solver options; two for Cbc, one for Ipopt, and one
for SYMPHONY. You can have any number of options. Note the format for specifying an option:

<solverOption name="maxN" solver="cbc" value="5" />

The attribute name specifies that the option name is maxN which is the maximum number of nodes
allowed in the branch-and-bound tree, the solver attribute specifies the name of the solver that
the option should be applied to, and the value attribute specifies the value of the option. As a
second example, consider the specification

<solverOption name="max_iter" solver="ipopt" type="integer" value="2000"/>

In this example we are specifying an iteration limit for Ipopt. Note the additional attribute type
that has value integer. The Ipopt solver requires specifying the data type (string, integer, or nu-
meric) for its options. Different solvers have different options, and we recommend that the user look

10

at the documentation for the solver of interest in order to see which options are available. A good
summary of options for COIN-OR solvers is http://www.coin-or.org/GAMSlinks/gamscoin.pdf.

It is also possible to specify the name of the solver and the server location in the options
file. Indeed, if you examine the file solveroptions.osol you will see that there is an XML
tag <solverToInvoke> and that the solver given is symphony. There is also an XML tag
<serviceURI> that can be used to specify the location of the server. For the option file solverop-
tions.osol passing the following options to OSAmplClient options

solver symphony
optionFile solveroptions.osol
serviceURI http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService";

has exactly the same effect as passing the following options to OSAmplClient options

optionFile solveroptions.osol;

It is possible to override the solver option and the server location given in the option file. For
example, if the following options are passed to OSAmplClient options

optionFile solveroptions.osol
solver bonmin;

then Bonmin will be used rather than SYMPHONY.

2.2.3 AMPL Summary

1. tell AMPL to use the OSAmplClient as the solver:

option solver OSAmplClient;

2. specify options to the OSAmplclient solver by using the AMPL command OSAmplClient options

3. there are three possible options to specify:

• the name of the solver using the solver option, valid values for this option are clp, cbc,
dylp, ipopt, bonmin, couenne, symphony, and vol.

• the location of the remote server using the serviceURI option

• the location of the option file using the optionFile option

4. the solver and service URI options can be specified in the options file using the <solverToInvoke>
and <serviceURI> XML tags, respectively.

5. specifying the solver or serviceURI directly through OSAmplClient options will override
the settings in the options file

6. if no options are specified using OSAmplClient options, by default, for continuous linear
models clp is used. For continuous nonlinear models ipopt is used. For mixed-integer linear
models (MIP), cbc is used. For mixed-integer nonlinear models bonmin is used. All solvers
are invoked locally.

7. the options given to OSAmplClient options can be given in any order

11

3 Calling COIN-OR Solvers Using OSSolverService

The CoinEasy binary distribution contains an executable, OSSolverService.exe that can be used
to solve problems directly on a user’s desktop machine, or used to call the remote solver service
and solve the problem on the remote server. The OSSolverService.exe can take optimization
instances in OSiL, AMPL nl format, GAMS dat format, and MPS format.

At present, the OSSolverService.exe takes the following parameters (i.e. options). The order
of the parameters is irrelevant. Not all the parameters are required. However, if the solve or send
service methods (refer back to Section for 2.1.2) are invoked a problem instance location must be
specified.

-osil xxx.osil This is the name of the file that contains the optimization instance in OSiL
format. It is assumed that this file is available in a directory on the machine that is running
OSSolverService.exe. If this option is not specified then the instance location must be
specified in the OSoL solver options file.

-osol xxx.osol This is the name of the file that contains the solver options. It is assumed
that this file is available in a directory on the machine that is running OSSolverService.exe.
It is not necessary to specify this option.

-osrl xxx.osrl This is the name of the file that contains the solver solution. A valid file path
must be given on the machine that is running OSSolverService.exe. It is not necessary to
specify this option. If this option is not specified then the solver solution is displayed to the
screen.

-osplInput xxx.ospl The name of an input file in the OS Process Language (OSpL), this
is used as input to the knock method.

-osplOutput xxx.ospl The name of an output file in the OS Process Language (OSpL),
this the output string from the knock and kill method.

-serviceLocation url This is the URL of the solver service. It is not required, and if not
specified it is assumed that the problem is solved locally.

-serviceMethod methodName This is the method on the solver service to be invoked. The
options are solve, send, kill, knock, getJobID, and retrieve. The use of these options is
illustrated in the examples below. This option is not required, and the default value is solve.

-mps xxx.mps This is the name of the mps file if the problem instance is in mps for-
mat. It is assumed that this file is available in a directory on the machine that is running
OSSolverService.exe. The default file format is OSiL so this option is not required.

-nl xxx.nl This is the name of the AMPL nl file if the problem instance is in AMPL nl
format. It is assumed that this file is available in a directory on the machine that is running
OSSolverService.exe. The default file format is OSiL so this option is not required.

-dat gamscntr.dat This is the name of the GAMS control file. It is necessary to edit this
file and make sure that the path to the GAMS executable is correct for your machine.

-solver solverName Valid values for this option are clp, cbc, dylp, ipopt, bonmin,
couenne, symphony, and vol. This is an optional option. By default, for continuous lin-
ear models Clp is used. For continuous nonlinear models Ipopt is used. For mixed-integer
linear models (MIP), Cbc is used. For mixed-integer nonlinear models Bonmin is used.

12

-config pathToConfigureFile This parameter specifies a path on the local machine to
a text file containing values for the input parameters. This is convenient for the user not
wishing to constantly retype parameter values.

Typing at the command line

OSSolverService.exe --help

will provide the list of input parameters. The following command will invoke the Cbc solver (by
default) on the local machine to solve the problem instance eastborne.osil. When invoking the
commands below involving OSSolverService.exe we assume that: 1) the user is connected to the
directory where the OSSolverService.exe executable is located, and 2) that all files referred to
are in the same directory as the OSSolverService.exe.

3.1 Solving Problems Locally

Generally, when solving a problem locally the user will use the solve service method. The solve
method is invoked synchronously and waits for the solver to return the result. In this case, the
OSSolverService.exe reads a file on the hard drive (for example, an nl or OSiL file) with the
optimization instance. The optimization instance is parsed into a string which is passed to the
OSLibrary, which is linked with various solvers. The result of the optimization is passed back to
the OSSolverService.exe as a string in OSrL format. A simple example of a call is

OSSolverService.exe -osil eastborne.osil

Notice that a solver is not specified. Since eastborne.osil is a linear integer program, the default
solver Cbc is used.

Here is a more complicated set of options we could pass to the OSSolverService.exe at the
command line:

-osil eastborne.osil
-solver bonmin
-osrl temp.osrl
-osol solveroptions.osol

The first parameter -osil astborne.osil is the local location of the OSiL file, eastborne.osil,
that contains the problem instance. The second parameter, -solver bonmin, is the solver to be
invoked, in this case Bonmin instead of the default Cbc. The third parameter -osrl temp.osrl
specifies that the result should be written in OSrL format to the file tem.osrl. The forth paramter
is an options file, solveroptions.osol to be passed to the Bonmin solver. The parameters listed
above could all be given at the command line or they could be put in a text file, configfile.config,
and used as

OSSolverService.exe -config configfile.config

3.2 Solving Problems Remotely with Web Services

We now provide examples that illustrate using the OSSolverService.exe executable to call the
COIN-OR remote solver service. In the following sections we illustrate each of the six service
methods. This is basically a repeat of Section 2.1.2 applied to the OSSolverService.exe. All of
the concepts introduced in Section 2.1.2 carry over here.

13

3.2.1 The solve Service Method

First we illustrate a remote solve call. A example problem instance eastborne.osil is solved
on the COIN-OR solver server by passing the following options to the OSSolverService.exe.

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osil eastborne.osil

No solver is specified so by default the Cbc solver is used by the OSSolverService.exe. The
default serviceMethod is solve and that is what get invoked by using the two options above. An
equivalent set of options is

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osil eastborne.osil
-serviceMethod solve
-solver Cbc

The file with the optimization instance does not need to reside on the user’s machine. The
user can tell the COIN-OR solver server to get the optimization instance off of another machine.
Consider the following options:

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osol remoteSolve.osol

Examine the file remoteSolve.osol that is provided with this distribution. This option file
remoteSolve.osol contains an XML tag <instanceLocation>. See below.

<instanceLocation locationType="http">
http://www.coin-or.org/OS/parincLinear.osil
</instanceLocation>

The <instanceLocation> has an attribute locationType that has value http. This tells the solve
server to use an http get method to get the problem instance parincLinear.osil from the location
http://www.coin-or.org/OS.

3.2.2 The getJobID Service Method

The send method is used for asynchronous communication. Before submitting a job with the send
method a JobID is required. The OSSolverService.exe can get a JobID from the solver server
using the following options.

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-serviceMethod getJobID

A string is returned and printed to standard out with the JobID.

3.2.3 The send Service Method

When the solve service method is used, the OSSolverService.exe does not finish execution until
the solution is returned from the remote solver service. When the send method is used the instance
is communicated to the remote service and the OSSolverService.exe terminates after submission.
An example set of options for the send method is

14

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osol sendWithJobID.osol
-nl eastborne.nl
-serviceMethod send

Since the send method involves asynchronous communication the remote solver service must keep
track of jobs. The send method requires a JobID. In the above example, the jobID is provided in
the <jobID> XML tag in the sendWithJobID.osol file. For example:

<jobID>coinor12345xyz</jobID>

If no JobID is specified the OSSolverService.exe method first invokes the getJobID service
method to get a JobID, puts this information into an OSoL file it creates (or inserts in the current
OSoL file that does not have the JobID tag), and sends the information to the server. Of course a
value for serviceLocation must be provided.

3.2.4 The knock Service Method

The OSSolverService.exe process terminates after executing the send method. Therefore, it is
necessary to know when the job is completed on the remote server. One way is to include an email
address in the <contact> element with the attribute transportType set to smtp. A second way to
check on the status of a job is to use the knock service method. For example, assume a user wants
to know if the job with JobID coinor12345xyz is complete. A user would make the request with
OSSolverService.exe using the options:

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osplInput knock.ospl
-osol sendWithJobID.osol
-serviceMethod knock

where the sendWithJobID.osol file has the JobID XML tag of the job for which we are seeking
information. The result of this request is a string in OSpL format, with the data contained in its
processData section. The result is displayed on the screen; if the user desires it to be redirected to
a file, an additional option should be added that specifies a valid path name on the local system,
e.g.,

-osplOutput result.ospl

The resulting XML in the OSpL language should have a <state> element contained in the

<job jobID="coinor12345xyz">

element indicating that the job is finished.
When making a knock request, the OSoL string can be empty. In this example, if the OSoL

string had been empty the status of more than one job may be returned. In our default solver service
implementation, there is a configuration file OSParameter that has a parameter MAX JOBIDS TO KEEP.
The current default setting is 100. In a large-scale or commercial implementation it might be wise
to keep problem results and statistics in a database. Also, there are values other than getAll (i.e.,
get all process information related to the jobs) for the OSpL action attribute in the <request>
tag. For example, the action can be set to a value of ping if the user just wants to check if the
remote solver service is up and running. For details, check the OSpL schema.

15

3.2.5 The retrieve Service Method

The retrieve method is used to retrieve the solver solution. This method has a single string argu-
ment which is an OSoL string. A user would make a retrieve request with OSSolverService.exe
using the options:

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osol sendWithJobID.osol
-serviceMethod retrieve
-osrl test.osrl

The OSoL file sendWithJobID.osol contains a tag <jobID> that is communicated to the remote
service. The remote service locates the result and returns it as a string. The <jobID> should reflect
a <jobID> that was previously submitted using a send() command. The result is returned as a
string in OSrL format to the file �test.osrl.

3.2.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job
on the remote server using the kill service method. A user would make a kill request with
OSSolverService.exe using the options:

-serviceLocation http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService
-osol sendWithJobID.osol
-serviceMethod kill

The OSoL file sendWithJobID.osol contains a tag <jobID> that is communicated to the remote
service. The result is returned in OSpL format.

3.3 Summary Rules

1. When using the send() or solve() methods a problem instance file location must be specified
either at the command line, in the configuration file, or in the <instanceLocation> element
in the OSoL options file.

2. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

3. If the solver option is not specified, by default, for continuous linear models Clp is used.
For continuous nonlinear models Ipopt is used. For mixed-integer linear models (MIP), Cbc
is used. For mixed-integer nonlinear models Bonmin is used.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation
must be specified.

5. Parameters specified in the configure file are overridden by parameters specified at the com-
mand line. This is convenient if a user has a base configure file and wishes to override only a
few options.

Summary of Communication Protocols:

• solve(osil, osol):

16

– Takes OSiL and OSoL and returns OSrL (string/file version)

– Synchronous call, blocking request/response

• getJobID(osol)

– Gets a unique job id generated by the solver service

– Maintain session and state on a distributed system

• send(osil, osol)

– Same signature as the solve function but returns a boolean

– Asynchronous (server side), non-blocking call

• knock(ospl, osol)

– Get process and job status information from the remote server

• retrieve(osol)

– Retrieving result from anywhere anytime

• kill(osol)

– kill remote optimization jobs

– Critical in long running optimization jobs

4 More Sophisticated Methods

We have presented two approaches to using the COIN-OR solver server. One approach is to use
a modeling language (GAMS or AMPL) to generate the problem and send it to the server. The
second approach is to use the OSSolverService.exe to send an optimization instance in OSiL,
MPS, AMPL nl, or GAMS dat to the server. An alternative to these two methods is for the user
to write C++ code and generate an application that links to various COIN-OR. This approach
is described in a separate document. See . Numerous examples are given in the document. For
example, how to use a C++ to directly generate the model.

5 Obtaining the Files

The applications and example files discussed in the document are contained in a single download.
The user should be up and running and ready to duplicate every example in this document by
downloading the distribution at *****. This distribution contains:

• OSAmplClient.exe an executable used by AMPL to connect to the CoinAll solvers

• OSSolverService a command line executable used to run the CoinAll solvers

• gmsos .zip (to be put in the GAMS directory if you use GAMS)

• eastborne.gms a GAMS model test problem

17

• eastborne.mod an AMPL model test problem

• eastborne.nl an test problem in AMPL nl format

• eastborne.osil a test problem in OSiL format

• knock.ospl – a sample file in OSpL format

• remoteSolve.osol – an options file for call instances on a third-party machine

• sendWithJobID.osol – a sample options file

• solveroptions.osol – a sample options file

18

